Download Free Finite Element Methods In Electrical Power Engineering Book in PDF and EPUB Free Download. You can read online Finite Element Methods In Electrical Power Engineering and write the review.

This book is designed to give the theoretical foundation needed by the new user of finite elements in electrical power engineering, and shows how the equipment designer can benefit from finite element analysis. It is divided into three parts; theory, modelling,and application of the finiteelement method. The first part outlines relevant electromagnetics, including treatment of boundaries, saturation and permanent magnets. It also shows how the finite element equations can be formulated. The presentation throughout is aimed at giving the reader a physical understanding of the process.The second part deals with special aspects of finite element modelling of engineering problems, including problem formulation, data generation and post processing and emphasises the importance of engineering judgement. The final part is an assembly of 'real' magnetic and electric field problemssolved by finite elements, including application to turbine generators, permanent magnet machines, switched reluctance drives, induction motors, transformers and bushings.
In Finite Element Analysis of Electrical Machines the author covers two-dimensional analysis, emphasizing the use of finite elements to perform the most common calculations required of machine designers and analysts. The book explains what is inside a finite element program, and how the finite element method can be used to determine the behavior of electrical machines. The material is tutorial and includes several completely worked out examples. The main illustrative examples are synchronous and induction machines. The methods described have been used successfully in the design and analysis of most types of rotating and linear machines. Audience: A valuable reference source for academic researchers, practitioners and designers of electrical machinery.
This third edition of the principal text on the finite element method for electrical engineers and electronics specialists presents the method in a mathematically undemanding style, accessible to undergraduates who may be encountering it for the first time. Like the earlier editions, it begins by deriving finite elements for the simplest familiar potential fields, and then formulates finite elements for a wide range of applied electromagnetics problems. These include wave propagation, diffusion, and static fields; open-boundary problems and nonlinear materials; axisymmetric, planar and fully three-dimensional geometries; and scalar and vector fields. A wide selection of demonstration programs allows the reader to follow the practical use of the methods. Besides providing all that is needed for the beginning undergraduate student, this textbook is also a valuable reference text for professional engineers and research students.
From the fan motor in your PC to precision control of aircraft, electrical machines of all sizes, varieties, and levels of complexity permeate our world. Some are very simple, while others require exacting and application-specific design. Electrical Machine Analysis Using Finite Elements provides the tools necessary for the analysis and design of any type of electrical machine by integrating mathematical/numerical techniques with analytical and design methodologies. Building successively from simple to complex analyses, this book leads you step-by-step through the procedures and illustrates their implementation with examples of both traditional and innovative machines. Although the examples are of specific devices, they demonstrate how the procedures apply to any type of electrical machine, introducing a preliminary theory followed by various considerations for the unique circumstance. The author presents the mathematical background underlying the analysis, but emphasizes application of the techniques, common strategies, and obtained results. He also supplies codes for simple algorithms and reveals analytical methodologies that universally apply to any software program. With step-by-step coverage of the fundamentals and common procedures, Electrical Machine Analysis Using Finite Elements offers a superior analytical framework that allows you to adapt to any electrical machine, to any software platform, and to any specific requirements that you may encounter.
Like the earlier editions, this text begins by deriving finite elements for the simplest familiar potential fields, then advances to formulate finite elements for a wide range of applied electromagnetics problems. A wide selection of demonstration programs allows the reader to follow the practical use of the methods.
Designed for a one-semester course in Finite Element Method, this compact and well-organized text presents FEM as a tool to find approximate solutions to differential equations. This provides the student a better perspective on the technique and its wide range of applications. This approach reflects the current trend as the present-day applications range from structures to biomechanics to electromagnetics, unlike in conventional texts that view FEM primarily as an extension of matrix methods of structural analysis. After an introduction and a review of mathematical preliminaries, the book gives a detailed discussion on FEM as a technique for solving differential equations and variational formulation of FEM. This is followed by a lucid presentation of one-dimensional and two-dimensional finite elements and finite element formulation for dynamics. The book concludes with some case studies that focus on industrial problems and Appendices that include mini-project topics based on near-real-life problems. Postgraduate/Senior undergraduate students of civil, mechanical and aeronautical engineering will find this text extremely useful; it will also appeal to the practising engineers and the teaching community.
The first book applying HBFEM to practical electronic nonlinear field and circuit problems • Examines and solves wide aspects of practical electrical and electronic nonlinear field and circuit problems presented by HBFEM • Combines the latest research work with essential background knowledge, providing an all-encompassing reference for researchers, power engineers and students of applied electromagnetics analysis • There are very few books dealing with the solution of nonlinear electric- power-related problems • The contents are based on the authors’ many years’ research and industry experience; they approach the subject in a well-designed and logical way • It is expected that HBFEM will become a more useful and practical technique over the next 5 years due to the HVDC power system, renewable energy system and Smart Grid, HF magnetic used in DC/DC converter, and Multi-pulse transformer for HVDC power supply • HBFEM can provide effective and economic solutions to R&D product development • Includes Matlab exercises
Advanced topics of research in field computation are explored in this publication. Contributions have been sourced from international experts, ensuring a comprehensive specialist perspective. A unity of style has been achieved by the editor, who has specifically inserted appropriate cross-references throughout the volume, plus a single collected set of references at the end. The book provides a multi-faceted overview of the power and effectiveness of computation techniques in engineering electromagnetics. In addition to examining recent and current developments, it is hoped that it will stimulate further research in the field.
The book retains its strong conceptual approach, clearly examining the mathematical underpinnings of FEM, and providing a general approach of engineering application areas.Known for its detailed, carefully selected example problems and extensive selection of homework problems, the author has comprehensively covered a wide range of engineering areas making the book approriate for all engineering majors, and underscores the wide range of use FEM has in the professional world