Download Free Fingerprints Of Climate Change Book in PDF and EPUB Free Download. You can read online Fingerprints Of Climate Change and write the review.

In recent years an increasing number of studies have been published reporting observations of adapted behaviour and shifting species ranges of plant and animal species due to recent climate warming. Are these `fingerprints' of climate change? An international conference was organised to bring together scientists from different continents with different expertise but sharing the same issue of climate change impact studies. Ecologists, zoologists, and botanists exchanged and discussed the findings from their individual field of research. The present book is an international collection of biological signs of recent climate warming, neither based only on computer models nor on prediction for the future, but mainly on actually occurring changes in the biosphere such as adapted behaviour or shifts in the ranges of species. `Fingerprints' of Climate Change presents ecological evidence that organisms are responding to recent global warming. The observed changes may foreshadow the types of impacts likely to become more frequent and widespread with continued warming.
You are surrounded by stickiness. With every step you take, air molecules cling to you and slow you down; the effect is harder to ignore in water. When you hit the road, whether powered by pedal or engine, you rely on grip to keep you safe. The Post-it note and glue in your desk drawer. The non-stick pan on your stove. The fingerprints linked to your identity. The rumbling of the Earth deep beneath your feet, and the ice that transforms waterways each winter. All of these things are controlled by tiny forces that operate on and between surfaces, with friction playing the leading role. In Sticky, Laurie Winkless explores some of the ways that friction shapes both the manufactured and natural worlds, and describes how our understanding of surface science has given us an ability to manipulate stickiness, down to the level of a single atom. But this apparent success doesn't tell the whole story. Each time humanity has pushed the boundaries of science and engineering, we've discovered that friction still has a few surprises up its sleeve. So do we really understand this force? Can we say with certainty that we know how a gecko climbs, what's behind our sense of touch, or why golf balls, boats and aircraft move as they do? Join Laurie as she seeks out the answers from experts scattered across the globe, uncovering a stack of scientific mysteries along the way.
This book introduces climate change fundamentals and essential concepts that reveal the extent of the damage, the impacts felt around the globe, and the innovation and leadership it will take to bring an end to the status quo. Emphasizing peer-reviewed literature, this text details the impact of climate change on land and sea, the water cycle, human communities, the weather, and humanity’s collective future. Coverage of greenhouse gases, oceanic and atmospheric processes, Pleistocene and Holocene paleoclimate, sea levels, and other fundamental topics provide a deep understanding of key mechanisms, while discussion of extreme weather, economic impacts, and resource scarcity reveals how climate change is already impacting people’s lives—and will continue to do so at an increasing rate for the foreseeable future.
GKSS SCHOOL OF ENVIRONMENTAL RESEARCH The National Research Laboratory GKSS (member of the Hermann von Helmholtz-Association of German Reserach Centres) located in Geesthacht, near Hamburg, is engaged in environmental research. The main interest of the research center focuses on regional climatology and climate dynamics, interdecadal variations in the state of the Baltic and North Sea and related estuaries, and the flow ofheavy metals, nutrients, and other materials in river catchments to the coastal zones. This research aims at-developing an under standing ofchanges in the environment, both as a result ofinternal (natural) dynamics and as a result of anthropogenic interference. In an effort to dis seminate the results of these research activities, as well as to initiate a broad discussion among senior scientists in the field, and younger colleagues from all areas of the globe, the Institutes of Hydrophysics and Atmospheric Physics at GKSS have instituted the GKSS School of Environmental Research. Appliedenvironmental research has always containedanelement ofaware ness ofthe societal implications and boundary conditions associated with en vironmental concerns. Consequently, the School of Environmental Research adheres to the philosophy that all discussion regarding environmental change should incorporate a social component. This necessity has been well acknowl edged and is apparent by the incorporation ofsocial scientists into the series of lectures. Senior scientists from Europe and North America were invited to give lectures to "students" from all parts of the globe.
Summarizes the science of climate change and impacts on the United States, for the public and policymakers.
Emissions of carbon dioxide from the burning of fossil fuels have ushered in a new epoch where human activities will largely determine the evolution of Earth's climate. Because carbon dioxide in the atmosphere is long lived, it can effectively lock the Earth and future generations into a range of impacts, some of which could become very severe. Emissions reductions decisions made today matter in determining impacts experienced not just over the next few decades, but in the coming centuries and millennia. According to Climate Stabilization Targets: Emissions, Concentrations, and Impacts Over Decades to Millennia, important policy decisions can be informed by recent advances in climate science that quantify the relationships between increases in carbon dioxide and global warming, related climate changes, and resulting impacts, such as changes in streamflow, wildfires, crop productivity, extreme hot summers, and sea level rise. One way to inform these choices is to consider the projected climate changes and impacts that would occur if greenhouse gases in the atmosphere were stabilized at a particular concentration level. The book quantifies the outcomes of different stabilization targets for greenhouse gas concentrations using analyses and information drawn from the scientific literature. Although it does not recommend or justify any particular stabilization target, it does provide important scientific insights about the relationships among emissions, greenhouse gas concentrations, temperatures, and impacts. Climate Stabilization Targets emphasizes the importance of 21st century choices regarding long-term climate stabilization. It is a useful resource for scientists, educators and policy makers, among others.
Climate Change: Evidence and Causes is a jointly produced publication of The US National Academy of Sciences and The Royal Society. Written by a UK-US team of leading climate scientists and reviewed by climate scientists and others, the publication is intended as a brief, readable reference document for decision makers, policy makers, educators, and other individuals seeking authoritative information on the some of the questions that continue to be asked. Climate Change makes clear what is well-established and where understanding is still developing. It echoes and builds upon the long history of climate-related work from both national academies, as well as on the newest climate-change assessment from the United Nations' Intergovernmental Panel on Climate Change. It touches on current areas of active debate and ongoing research, such as the link between ocean heat content and the rate of warming.
As climate has warmed over recent years, a new pattern of more frequent and more intense weather events has unfolded across the globe. Climate models simulate such changes in extreme events, and some of the reasons for the changes are well understood. Warming increases the likelihood of extremely hot days and nights, favors increased atmospheric moisture that may result in more frequent heavy rainfall and snowfall, and leads to evaporation that can exacerbate droughts. Even with evidence of these broad trends, scientists cautioned in the past that individual weather events couldn't be attributed to climate change. Now, with advances in understanding the climate science behind extreme events and the science of extreme event attribution, such blanket statements may not be accurate. The relatively young science of extreme event attribution seeks to tease out the influence of human-cause climate change from other factors, such as natural sources of variability like El Niño, as contributors to individual extreme events. Event attribution can answer questions about how much climate change influenced the probability or intensity of a specific type of weather event. As event attribution capabilities improve, they could help inform choices about assessing and managing risk, and in guiding climate adaptation strategies. This report examines the current state of science of extreme weather attribution, and identifies ways to move the science forward to improve attribution capabilities.