Download Free Final Safety Analysis Addendum To Hazard Summary Report Experimental Breeder Reactor No Ii Ebr Ii Book in PDF and EPUB Free Download. You can read online Final Safety Analysis Addendum To Hazard Summary Report Experimental Breeder Reactor No Ii Ebr Ii and write the review.

This report is the second in a series of compilations of the formal Final Safety Analysis Addenda (FSAA`s) to the EBR-II Hazard Summary Report and Addendum. Sections 2 and 3 are edited versions of the original FSAA`s prepared in support of certain modifications to the reactor-shutdown-system portion of the EBR-II plant-protection system. Section 4 is an edited version of the original FSAA prepared in support of certain modifications to a system classified as an engineered safety feature. These sections describe the pre- and postmodification system, the rationale for the modification, and required supporting safety analysis. Section 5 provides an updated description and analysis of the EBR-II emergency power system. Section 6 summarizes all significant modifications to the EBR-II plant-protection system to date.
This report evaluates abnormal and accident conditions postulated for the EBR-II cover-gas cleanup system (CGCS). Major considerations include loss of CGCS function with a high level of cover-gas activity, loss of the liquid-nitrogen coolant required for removing fission products from the cover gas, contamination of the cover gas from sources other than the reactor, and loss of system pressure boundary. Calculated exposures resulting from the maximum hypothetical accident (MHA) are less than 2% of the 25-Rem limit stipulated in U.S. Regulation 10 CFR 100; id est, a person standing at any point on an exclusion boundary (area radius of 600 m) for 2 h following onset of the postulated release would receive less than 0.45 Rem whole-body dose. The on-site whole-body dose (10 m from the source) would be less than 16 Rem.
The EBR-II reactor consists of an enriched core surrounded on all sides by a fertile blanket of depleted uranium. The fuel elements which comprise the core section of the reactor consist of small diameter cylindrical pin assemblies. The design of the fuel element is influenced by the desire for high thermal performance, high burnup, and simplicity of construction. The fuel pin is a loss fit in a thin-walled tube which provides a clearance annulus between the pin and the tube wall. This annulus is filled with static sodium to provide a heat transfer bond between the fuel and fuel tube. Heat is removed from the fuel element by the primary sodium flowing along the outside of the fuel tube.
On April 3, 1986 two milestone tests were conducted in Experimental Breeder Reactor-2 (EBR-II). The first test was a loss of flow without scram and the second was a loss of heat sink without scram. Both tests were initiated from 100% power and in both tests the reactor was shut down by natural processes, principally thermal expansion, without automatic scram, operator intervention or the help of special in-core devices. The temperature transients during the tests were mild, as predicted, and there was no damage to the core or reactor plant structures. In a general sense, therefore, the tests plus supporting analysis demonstrated the feasibility of inherent passive shutdown for undercooling accidents in metal-fueled LMRs. The results provide a technical basis for future experiments in EBR-II to demonstrate inherent safety for overpower accidents and provide data for validation of computer codes used for design and safety analysis of inherently safe reactor plants.
The mission of the Experimental Breeder Reactor II (EBR-II) has evolved from that of a small LMFBR demonstration plant to a major irradiation-test facility. Because of that evolution, many operational-safety issues have been encountered. The paper describes the EBR-II operational-safety experience in four areas: protection-system design, safety-document preparation, tests of off-normal reactor conditions, and tests of elements with breached cladding.
Semiannual, with semiannual and annual indexes. References to all scientific and technical literature coming from DOE, its laboratories, energy centers, and contractors. Includes all works deriving from DOE, other related government-sponsored information, and foreign nonnuclear information. Arranged under 39 categories, e.g., Biomedical sciences, basic studies; Biomedical sciences, applied studies; Health and safety; and Fusion energy. Entry gives bibliographical information and abstract. Corporate, author, subject, report number indexes.
A Probabilistic Risk Assessment (PRA) of the Experimental Breeder Reactor II (EBR-II), a Department of Energy (DOE) Category A reactor, has recently been completed at Argonne National Laboratory (ANL). Within the scope of the ANL QA Programs, a QA Plan specifically for the EBR-II PRA was developed. The QA Plan covered all aspects of the PRA development, with emphasis on the procedures for document and software control, and the internal and external review process. The effort spent in the quality assurance tasks for the EBR-II PRA has reciprocated by providing acceptance of the work and confidence in the quality of the results.
A Probabilistic Risk Assessment (PRA) of the Experimental Breeder Reactor 11 (EBR-11), a Department of Energy (DOE) Category A research reactor, has recently been completed at Argonne National Laboratory (ANL), and has been performed with close collaboration between PRA analysts and engineering and operations staff. A product of this Involvement of plant personnel has been a excellent acceptance of the PRA as a tool, which has already resulted In a variety of applications of the EBR-11 PRA. The EBR-11 has been used in support of plant hardware and procedure modifications and In new system design work. A new application in support of the refueling safety analysis will be completed in the near future.