Download Free Filtering And Control Of Stochastic Jump Hybrid Systems Book in PDF and EPUB Free Download. You can read online Filtering And Control Of Stochastic Jump Hybrid Systems and write the review.

This book presents recent research work on stochastic jump hybrid systems. Specifically, the considered stochastic jump hybrid systems include Markovian jump Ito stochastic systems, Markovian jump linear-parameter-varying (LPV) systems, Markovian jump singular systems, Markovian jump two-dimensional (2-D) systems, and Markovian jump repeated scalar nonlinear systems. Some sufficient conditions are first established respectively for the stability and performances of those kinds of stochastic jump hybrid systems in terms of solution of linear matrix inequalities (LMIs). Based on the derived analysis conditions, the filtering and control problems are addressed. The book presents up-to-date research developments and novel methodologies on stochastic jump hybrid systems. The contents can be divided into two parts: the first part is focused on robust filter design problem, while the second part is put the emphasis on robust control problem. These methodologies provide a framework for stability and performance analysis, robust controller design, and robust filter design for the considered systems. Solutions to the design problems are presented in terms of LMIs. The book is a timely reflection of the developing area of filtering and control theories for Markovian jump hybrid systems with various kinds of imperfect information. It is a collection of a series of latest research results and therefore serves as a useful textbook for senior and/or graduate students who are interested in knowing 1) the state-of-the-art of linear filtering and control areas, and 2) recent advances in stochastic jump hybrid systems. The readers will also benefit from some new concepts, new models and new methodologies with practical significance in control engineering and signal processing.
This book aims to introduce the state-of-the-art research of stability/performance analysis and optimal synthesis methods for fuzzy-model-based systems. A series of problems are solved with new approaches of design, analysis and synthesis of fuzzy systems, including stabilization control and stability analysis, dynamic output feedback control, fault detection filter design, and reduced-order model approximation. Some efficient techniques, such as Lyapunov stability theory, linear matrix inequality, reciprocally convex approach, and cone complementary linearization method, are utilized in the approaches. This book is a comprehensive reference for researchers and practitioners working on intelligent control, model reduction, and fault detection of fuzzy systems, and is also a useful source of information for senior undergraduates and graduates in these areas. The readers will benefit from some new concepts and methodologies with theoretical and practical significance in system analysis and control synthesis.
This book focuses on multi-model systems, describing how to apply intelligent technologies to model complex multi-model systems by combining stochastic jumping system, neural network and fuzzy models. It focuses on robust filtering, including finite-time robust filtering, finite-frequency robust filtering and higher order moment robust filtering schemes, as well as fault detection problems for multi-model jump systems, such as observer-based robust fault detection, filtering-based robust fault detection and neural network-based robust fault detection methods. The book also demonstrates the validity and practicability of the theoretical results using simulation and practical examples, like circuit systems, robot systems and power systems. Further, it introduces readers to methods such as finite-time filtering, finite-frequency robust filtering, as well as higher order moment and neural network-based fault detection methods for multi-model jumping systems, allowing them to grasp the modeling, analysis and design of the multi-model systems presented and implement filtering and fault detection analysis for various systems, including circuit, network and mechanical systems.
This monograph is an up-to-date presentation of the analysis and design of singular Markovian jump systems (SMJSs) in which the transition rate matrix of the underlying systems is generally uncertain, partially unknown and designed. The problems addressed include stability, stabilization, H∞ control and filtering, observer design, and adaptive control. applications of Markov process are investigated by using Lyapunov theory, linear matrix inequalities (LMIs), S-procedure and the stochastic Barbalat’s Lemma, among other techniques. Features of the book include: · study of the stability problem for SMJSs with general transition rate matrices (TRMs); · stabilization for SMJSs by TRM design, noise control, proportional-derivative and partially mode-dependent control, in terms of LMIs with and without equation constraints; · mode-dependent and mode-independent H∞ control solutions with development of a type of disordered controller; · observer-based controllers of SMJSs in which both the designed observer and controller are either mode-dependent or mode-independent; · consideration of robust H∞ filtering in terms of uncertain TRM or filter parameters leading to a method for totally mode-independent filtering · development of LMI-based conditions for a class of adaptive state feedback controllers with almost-certainly-bounded estimated error and almost-certainly-asymptotically-stable corres ponding closed-loop system states · applications of Markov process on singular systems with norm bounded uncertainties and time-varying delays Analysis and Design of Singular Markovian Jump Systems contains valuable reference material for academic researchers wishing to explore the area. The contents are also suitable for a one-semester graduate course.
In control theory, sliding mode control (SMC) is a nonlinear control method that alters the dynamics of a nonlinear system by application of a discontinuous control signal that forces the system to slide along a cross-section of the system's normal behaviour. In recent years, SMC has been successfully applied to a wide variety of practical engineering systems including robot manipulators, aircraft, underwater vehicles, spacecraft, flexible space structures, electrical motors, power systems, and automotive engines. Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems addresses the increasing demand for developing SMC technologies and comprehensively presents the new, state-of-the-art sliding mode control methodologies for uncertain parameter-switching hybrid systems. It establishes a unified framework for SMC of Markovian jump singular systems and proposes new SMC methodologies based on the analysis results. A series of problems are solved with new approaches for analysis and synthesis of switched hybrid systems, including stability analysis and stabilization, dynamic output feedback control, and SMC. A set of newly developed techniques (e.g. average dwell time, piecewise Lyapunov function, parameter-dependent Lyapunov function, cone complementary linearization) are exploited to handle the emerging mathematical/computational challenges. Key features: Covers new concepts, new models and new methodologies with theoretical significance in system analysis and control synthesis Includes recent advances in Markovian jump systems, switched hybrid systems, singular systems, stochastic systems and time-delay systems Includes solved problems Introduces advanced techniques Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems is a comprehensive reference for researchers and practitioners working in control engineering, system sciences and applied mathematics, and is also a useful source of information for senior undergraduate and graduates studying in these areas.
The book focuses on analysis and design for positive stochastic jump systems. By using multiple linear co-positive Lyapunov function method and linear programming technique, a basic theoretical framework is formed toward the issues of analysis and design for positive stochastic jump systems. This is achieved by providing an in-depth study on several major topics such as stability, time delay, finite-time control, observer design, filter design, and fault detection for positive stochastic jump systems. The comprehensive and systematic treatment of positive systems is one of the major features of the book, which is particularly suited for readers who are interested to learn non-negative theory. By reading this book, the reader can obtain the most advanced analysis and design techniques for positive stochastic jump systems.
This book focuses on the control and state estimation problems for dynamical network systems with complex samplings subject to various network-induced phenomena. It includes a series of control and state estimation problems tackled under the passive sampling fashion. Further, it explains the effects from the active sampling fashion, i.e., event-based sampling is examined on the control/estimation performance, and novel design technologies are proposed for controllers/estimators. Simulation results are provided for better understanding of the proposed control/filtering methods. By drawing on a variety of theories and methodologies such as Lyapunov function, linear matrix inequalities, and Kalman theory, sufficient conditions are derived for guaranteeing the existence of the desired controllers and estimators, which are parameterized according to certain matrix inequalities or recursive matrix equations. Covers recent advances of control and state estimation for dynamical network systems with complex samplings from the engineering perspective Systematically introduces the complex sampling concept, methods, and application for the control and state estimation Presents unified framework for control and state estimation problems of dynamical network systems with complex samplings Exploits a set of the latest techniques such as linear matrix inequality approach, Vandermonde matrix approach, and trace derivation approach Explains event-triggered multi-rate fusion estimator, resilient distributed sampled-data estimator with predetermined specifications This book is aimed at researchers, professionals, and graduate students in control engineering and signal processing.
This book introduces the principle theories and applications of control and filtering problems to address emerging hot topics in feedback systems. With the development of IT technology at the core of the 4th industrial revolution, dynamic systems are becoming more sophisticated, networked, and advanced to achieve even better performance. However, this evolutionary advance in dynamic systems also leads to unavoidable constraints. In particular, such elements in control systems involve uncertainties, communication/transmission delays, external noise, sensor faults and failures, data packet dropouts, sampling and quantization errors, and switching phenomena, which have serious effects on the system’s stability and performance. This book discusses how to deal with such constraints to guarantee the system’s design objectives, focusing on real-world dynamical systems such as Markovian jump systems, networked control systems, neural networks, and complex networks, which have recently excited considerable attention. It also provides a number of practical examples to show the applicability of the presented methods and techniques. This book is of interest to graduate students, researchers and professors, as well as R&D engineers involved in control theory and applications looking to analyze dynamical systems with constraints and to synthesize various types of corresponding controllers and filters for optimal performance of feedback systems.
Proceedings of the European Control Conference 1993, Groningen, Netherlands, June 28 – July 1, 1993
The book addresses the control issues such as stability analysis, control synthesis and filter design of Markov jump systems with the above three types of TPs, and thus is mainly divided into three parts. Part I studies the Markov jump systems with partially unknown TPs. Different methodologies with different conservatism for the basic stability and stabilization problems are developed and compared. Then the problems of state estimation, the control of systems with time-varying delays, the case involved with both partially unknown TPs and uncertain TPs in a composite way are also tackled. Part II deals with the Markov jump systems with piecewise homogeneous TPs. Methodologies that can effectively handle control problems in the scenario are developed, including the one coping with the asynchronous switching phenomenon between the currently activated system mode and the controller/filter to be designed. Part III focuses on the Markov jump systems with memory TPs. The concept of σ-mean square stability is proposed such that the stability problem can be solved via a finite number of conditions. The systems involved with nonlinear dynamics (described via the Takagi-Sugeno fuzzy model) are also investigated. Numerical and practical examples are given to verify the effectiveness of the obtained theoretical results. Finally, some perspectives and future works are presented to conclude the book.