Download Free Fields In Motion Book in PDF and EPUB Free Download. You can read online Fields In Motion and write the review.

Fields in Motion: Ethnography in the Worlds of Dance examines the deeper meanings and resonances of artistic dance in contemporary culture. The book comprises four sections: methods and methodologies, autoethnography, pedagogies and creative processes, and choreographies as cultural and spiritual representations. The contributors bring an insiders insight to their accounts of the nature and function of these artistic practices, giving voice to dancers, dance teachers, creators, programmers, spectators, students, and scholars. International and intergenerational, this collection of groundbreaking scholarly research points to a new direction for both dance studies and dance anthropology. Traditionally the exclusive domain of aesthetic philosophers, the art of dance is here reframed as cultural practice, and its significance is revealed through a chorus of voices from practitioners and insider ethnographers.
In six parts, this book considers the extent to which computational, neural, and ecological constraints have shaped the mechanisms underlying motion vision: - Early Motion Vision - Motion Signals for Local and Global Analysis - Optical Flow Patterns - Motion Vision in Action - Neural Coding of Motion - Motion in Natural Environments Each topic is introduced by a keynote chapter which is accompanied by several companion articles. Written by an international group of experts in neurobiology, psychophysics, animal behaviour, machine vision, and robotics, the book is designed to explore as comprehensively as possible the present state of knowledge concerning the principal factors that have guided the evolution of motion vision.
This book constitutes the thoroughly refereed post-proceedings of the First International Workshop on Complex Motion, IWCM 2004, held in Schloss Reisensburg, Günzburg, Germany, in October 2004. The 17 full papers presented are fully revised to incorporate reviewers' comments and discussions at the workshop.
This international bestseller and essential reference is the "bible" for digital video engineers and programmers worldwide. This is by far the most informative analog and digital video reference available, includes the hottest new trends and cutting-edge developments in the field.Video Demystified, Fourth Edition is a "one stop" reference guide for the various digital video technologies. The fourth edition is completely updated with all new chapters on MPEG-4, H.264, SDTV/HDTV, ATSC/DVB, and Streaming Video (Video over DSL, Ethernet, etc.), as well as discussions of the latest standards throughout. The accompanying CD-ROM is updated to include a unique set of video test files in the newest formats. *This essential reference is the "bible" for digital video engineers and programmers worldwide *Contains all new chapters on MPEG-4, H.264, SDTV/HDTV, ATSC/DVB, and Streaming Video *Completely revised with all the latest and most up-to-date industry standards
Motion estimation is a long-standing cornerstone of image and video processing. Most notably, motion estimation serves as the foundation for many of today's ubiquitous video coding standards including H.264. Motion estimators also play key roles in countless other applications that serve the consumer, industrial, biomedical, and military sectors. Of the many available motion estimation techniques, optical flow is widely regarded as most flexible. The flexibility offered by optical flow is particularly useful for complex registration and interpolation problems, but comes at a considerable computational expense. As the volume and dimensionality of data that motion estimators are applied to continue to grow, that expense becomes more and more costly. Control grid motion estimators based on optical flow can accomplish motion estimation with flexibility similar to pure optical flow, but at a fraction of the computational expense. Control grid methods also offer the added benefit of representing motion far more compactly than pure optical flow. This booklet explores control grid motion estimation and provides implementations of the approach that apply to data of multiple dimensionalities. Important current applications of control grid methods including registration and interpolation are also developed. Table of Contents: Introduction / Control Grid Interpolation (CGI) / Application of CGI to Registration Problems / Application of CGI to Interpolation Problems / Discussion and Conclusions
Introducing basic principles of plasma physics and their applications to space, laboratory and astrophysical plasmas, this new edition provides updated material throughout. Topics covered include single-particle motions, kinetic theory, magnetohydrodynamics, small amplitude waves in hot and cold plasmas, and collisional effects. New additions include the ponderomotive force, tearing instabilities in resistive plasmas and the magnetorotational instability in accretion disks, charged particle acceleration by shocks, and a more in-depth look at nonlinear phenomena. A broad range of applications are explored: planetary magnetospheres and radiation belts, the confinement and stability of plasmas in fusion devices, the propagation of discontinuities and shock waves in the solar wind, and analysis of various types of plasma waves and instabilities that can occur in planetary magnetospheres and laboratory plasma devices. With step-by-step derivations and self-contained introductions to mathematical methods, this book is ideal as an advanced undergraduate to graduate-level textbook, or as a reference for researchers.
This revised and extended edition of the book Fields, Symmetries, and Quarks, originally published by McGraw-Hill Book Company, Hamburg, 1989, contains a new chapter on electroweak interactions which has also grown out of lectures that I have given in the meantime. In addition, a number of changes, mainly in the metric used, in the discussion of the theory of strong interactions, QCD, and in the chapter on hadron physics, have been made and errors have been corrected. The motivation for this book, however, is still the same as it was 10 years ago: This is a book on quantum field theory and our present understanding of leptons and hadrons for advanced students and the non-specialists and, in particular, the experimentalists working on problems of nuclear and hadron physics. I am grateful to Dr. S. Leupold for a very careful reading of the revised manuscript, many corrections, and helpful suggestions and to C. Traxler for producing the figures and for constructive discussions.
The contributors to this book focus on such key aspects of motion processing as interaction and integration between locally measured motion units, structure from motion, heading in an optical flow, and second-order motion. They also discuss the interaction of motion processing with other high-level visual functions such as surface representation and attention.