Download Free Field Propulsion System For Space Travel Book in PDF and EPUB Free Download. You can read online Field Propulsion System For Space Travel and write the review.

"This e-book presents an overview of field propulsion systems for the use of space travel and interstellar travel. Such systems include warp drive, space drive and gravity-control schemes, and are propelled receiving the propulsive force derived from an in"
Space propulsion systems have a great influence on our ability to travel to other planets or how cheap a satellite can provide TV programs. This book provides an up-to-date overview of all kinds of propulsion systems ranging from classical rocket technology, nuclear propulsion to electric propulsion systems, and further to micro-, propellantless and even breakthrough propulsion, which is a new program under development at NASA. The author shows the limitations of the present concepts and how they could look like in the future. Starting from historical developments, the reader is taken on a journey showing the amazing technology that has been put on hold for decades to be rediscovered in the near future for questions like how we can even reach other stars within a human lifetime. The author is actively involved in advanced propulsion research and contributes with his own experience to many of the presented topics. The book is written for anyone who is interested in how space travel can be revolutionized.
Due to the lack of space propulsion technology and space navigation technology that can accelerate at high speeds in a short time, it is well-known that mankind does not currently have technology to realize a journey to other star systems. This book explains galaxy exploration by combining field propulsion based on the physical structure of space-time and a new navigation theory. A field propulsion system is propelled without mass expulsion. The propulsive force as a pressure thrust arises from the interaction of space-time around the spaceship itself; this causes the spaceship to propel against the space-time structure. Firstly, from the physical and engineering point of view, the propulsion principle and propulsion theory of field propulsion are explained. As a typical example of field propulsion, the space drive propulsion system includes its theory, the registered patent, and the latest development from the viewpoint of cosmology and astrophysics. Secondly, for galaxy exploration, navigation technology such as a wormhole that bypasses the wall of light speed, not propulsion technology, is indispensable. A method for overcoming the light barrier (the seeming wall-of-light in 4-D space-time), or a hyperspace navigation theory to jump the light-barrier, is explained. Combining the space propulsion system and the navigation system makes it possible to perform a realistic galaxy exploration.The reader will not only get a good introduction to the science and technology of field power and propulsion physics, but also to the possibility of interstellar navigation.
An understandable perspective on the types of space propulsion systems necessary to enable low-cost space flights to Earth orbit and to the Moon and the future developments necessary for exploration of the solar system and beyond to the stars.
Throughout most of the twentieth century, electric propulsion was considered the technology of the future. Now, the future has arrived. This important new book explains the fundamentals of electric propulsion for spacecraft and describes in detail the physics and characteristics of the two major electric thrusters in use today, ion and Hall thrusters. The authors provide an introduction to plasma physics in order to allow readers to understand the models and derivations used in determining electric thruster performance. They then go on to present detailed explanations of: Thruster principles Ion thruster plasma generators and accelerator grids Hollow cathodes Hall thrusters Ion and Hall thruster plumes Flight ion and Hall thrusters Based largely on research and development performed at the Jet Propulsion Laboratory (JPL) and complemented with scores of tables, figures, homework problems, and references, Fundamentals of Electric Propulsion: Ion and Hall Thrusters is an indispensable textbook for advanced undergraduate and graduate students who are preparing to enter the aerospace industry. It also serves as an equally valuable resource for professional engineers already at work in the field.
Rocket and air-breathing propulsion systems are the foundation on which planning for future aerospace systems rests. A Review of United States Air Force and Department of Defense Aerospace Propulsion Needs assesses the existing technical base in these areas and examines the future Air Force capabilities the base will be expected to support. This report also defines gaps and recommends where future warfighter capabilities not yet fully defined could be met by current science and technology development plans.
The technology of the next few decades could possibly allow us to explore with robotic probes the closest stars outside our Solar System, and maybe even observe some of the recently discovered planets circling these stars. This book looks at the reasons for exploring our stellar neighbors and at the technologies we are developing to build space probes that can traverse the enormous distances between the stars. In order to reach the nearest stars, we must first develop a propulsion technology that would take our robotic probes there in a reasonable time. Such propulsion technology has radically different requirements from conventional chemical rockets, because of the enormous distances that must be crossed. Surprisingly, many propulsion schemes for interstellar travel have been suggested and await only practical engineering solutions and the political will to make them a reality. This is a result of the tremendous advances in astrophysics that have been made in recent decades and the perseverance and imagination of tenacious theoretical physicists. This book explores these different propulsion schemes – all based on current physics – and the challenges they present to physicists, engineers, and space exploration entrepreneurs. This book will be helpful to anyone who really wants to understand the principles behind and likely future course of interstellar travel and who wants to recognizes the distinctions between pure fantasy (such as Star Trek’s ‘warp drive’) and methods that are grounded in real physics and offer practical technological solutions for exploring the stars in the decades to come.
A translation from German of a 1929 treatise by the author. Deals with the problem of the space travel. Expresses ideas about rocketry and space travel. Extensive treatment of the engineering aspects of a space station. Extensive bibliography. 100 drawings.
Frontiers of Propulsion Science is the first-ever compilation of emerging science relevant to such notions as space drives, warp drives, gravity control, and faster-than-light travel - the kind of breakthroughs that would revolutionize spaceflight and enable human voyages to other star systems. Although these concepts might sound like science fiction, they are appearing in growing numbers in reputable scientific journals. This is a nascent field where a variety of concepts and issues are being explored in the scientific literature, beginning in about the early 1990s. The collective status is still in step 1 and 2 of the scientific method, with initial observations being made and initial hypotheses being formulated, but a small number of approaches are already at step 4, with experiments underway. This emerging science, combined with the realization that rockets are fundamentally inadequate for interstellar exploration, led NASA to support the Breakthrough Propulsion Physics Project from 1996 through 2002.""Frontiers of Propulsion Science"" covers that project as well as other related work, so as to provide managers, scientists, engineers, and graduate students with enough starting material that they can comprehend the status of this research and decide if and how to pursue it in more depth themselves. Five major sections are included in the book: Understanding the Problem lays the groundwork for the technical details to follow; Propulsion Without Rockets discusses space drives and gravity control, both in general terms and with specific examples; Faster-Than-Light Travel starts with a review of the known relativistic limits, followed by the faster-than-light implications from both general relativity and quantum physics; Energy Considerations deals with spacecraft power systems and summarizes the limits of technology based on accrued science; and, From This Point Forward offers suggestions for how to manage and conduct research on such visionary topics.
The National Aerospace Initiative (NAI) was conceived as a joint effort between the Department of Defense (DOD) and the National Aeronautics and Space Administration (NASA) to sustain the aerospace leadership of the United States through the acceleration of selected aerospace technologies: hypersonic flight, access to space, and space technologies. The Air Force became concerned about the NAI's possible consequences on Air Force programs and budget if NAI program decisions differed from Air Force priorities. To examine this issue, it asked the NRC for an independent review of the NAI. This report presents the results of that assessment. It focuses on three questions asked by the Air Force: is NAI technically feasible in the time frame laid out; is it financially feasible over that period; and is it operationally relevant.