Download Free Field Methods In Remote Sensing Book in PDF and EPUB Free Download. You can read online Field Methods In Remote Sensing and write the review.

This concise, much-needed guide takes readers step by step through planning and executing field work associated with many different types of remote sensing projects. Remote sensing texts and research reports typically focus on data-analytic techniques while offering a dearth of information on procedures followed in the field. In contrast, this book provides clear recommendations for defining field work objectives, devising a valid sampling plan, finding locations using GPS, and selecting and using effective measurement techniques for field reflectance spectra and for studies of vegetation, soils, water, and urban areas. Appendices feature sample field note forms, an extensive bibliography on advanced and specialized methods, and online metadata sources.
Field Measurements for Environmental Remote Sensing: Instrumentation, Intensive Campaigns, and Satellite Applications is an academic synthesis of invaluable in situ measurements and techniques leveraged by the science of environmental remote sensing. Sections cover in situ datasets and observing methods used for satellite remote sending applications and validation, synthesizing the various techniques utilized by well-established application areas under a common paradigm. The book serves as both a textbook for students (upper-level undergraduate to graduate level) and a reference book for practitioners and researchers in the atmospheric, oceanic and remote sensing fields. Presents chapters organized according to subdiscipline, with each written by established experts in their relevant field Includes literature reviews, case studies and applications for each subdivision Features a synthesis of the suite of invaluable in situ measurements and techniques leveraged by the science of environmental remote sensing
This book is a completely updated, greatly expanded version of the previously successful volume by the author. The Second Edition includes new results and data, and discusses a unified framework and rationale for designing and evaluating image processing algorithms. Written from the viewpoint that image processing supports remote sensing science, this book describes physical models for remote sensing phenomenology and sensors and how they contribute to models for remote-sensing data. The text then presents image processing techniques and interprets them in terms of these models. Spectral, spatial, and geometric models are used to introduce advanced image processing techniques such as hyperspectral image analysis, fusion of multisensor images, and digital elevationmodel extraction from stereo imagery. The material is suited for graduate level engineering, physical and natural science courses, or practicing remote sensing scientists. Each chapter is enhanced by student exercises designed to stimulate an understanding of the material. Over 300 figuresare produced specifically for this book, and numerous tables provide a rich bibliography of the research literature.
This book introduces the overall concepts of research methods in Remote Sensing. It also addresses the entire research framework, ranging from ontology to documentation. As such, it covers the theory while providing a solid basis for engaging in concrete research activities. It is not intended as a textbook on remote sensing; rather, it offers guidance to those conducting research by examining philosophical and other issues that are generally not covered by textbooks. Various stages of research are discussed in detail, including illustrative discussions and helpful references. The topics considered in this book cover a part of the research methodologies explored in Master of Philosophy (M.Phil.) and Doctor of Philosophy (Ph.D.) programs. The book’s physical format has been kept to a compact, handy minimum in order to maximize its accessibility and readability for a broad range of researchers in the field of remote sensing.
Remote sensing is the use of electromagnetic sensors to monitor the earth's surface and atmosphere. This technique can produce anything from topographic or geologic maps to two- or three- dimensional distributions of environmental parameters to the detection of developing hurricanes or floods. These sensors produce digitized data, so it is important that anyone working in remote sensing is familiar with the techniques used. This updated second edition discusses a unified framework and rationale for designing and evaluating image processing algorithms.
This book provides a comprehensive overview of the state of the art in the field of thermal infrared remote sensing. Temperature is one of the most important physical environmental variables monitored by earth observing remote sensing systems. Temperature ranges define the boundaries of habitats on our planet. Thermal hazards endanger our resources and well-being. In this book renowned international experts have contributed chapters on currently available thermal sensors as well as innovative plans for future missions. Further chapters discuss the underlying physics and image processing techniques for analyzing thermal data. Ground-breaking chapters on applications present a wide variety of case studies leading to a deepened understanding of land and sea surface temperature dynamics, urban heat island effects, forest fires, volcanic eruption precursors, underground coal fires, geothermal systems, soil moisture variability, and temperature-based mineral discrimination. ‘Thermal Infrared Remote Sensing: Sensors, Methods, Applications’ is unique because of the large field it spans, the potentials it reveals, and the detail it provides. This book is an indispensable volume for scientists, lecturers, and decision makers interested in thermal infrared technology, methods, and applications.