Download Free Field Guide To Solid State Physics Book in PDF and EPUB Free Download. You can read online Field Guide To Solid State Physics and write the review.

"This Field Guide covers the essential topics of solid state physics, including crystal structures and dynamics, band structures, quantum structures, semiconductors, superconductors, and magnetism. Essential equations and simple diagrams convey the principles that form the core of this field."--
This is a first undergraduate textbook in Solid State Physics or Condensed Matter Physics. While most textbooks on the subject are extremely dry, this book is written to be much more exciting, inspiring, and entertaining.
While group theory and its application to solid state physics is well established, this textbook raises two completely new aspects. First, it provides a better understanding by focusing on problem solving and making extensive use of Mathematica tools to visualize the concepts. Second, it offers a new tool for the photonics community by transferring the concepts of group theory and its application to photonic crystals. Clearly divided into three parts, the first provides the basics of group theory. Even at this stage, the authors go beyond the widely used standard examples to show the broad field of applications. Part II is devoted to applications in condensed matter physics, i.e. the electronic structure of materials. Combining the application of the computer algebra system Mathematica with pen and paper derivations leads to a better and faster understanding. The exhaustive discussion shows that the basics of group theory can also be applied to a totally different field, as seen in Part III. Here, photonic applications are discussed in parallel to the electronic case, with the focus on photonic crystals in two and three dimensions, as well as being partially expanded to other problems in the field of photonics. The authors have developed Mathematica package GTPack which is available for download from the book's homepage. Analytic considerations, numerical calculations and visualization are carried out using the same software. While the use of the Mathematica tools are demonstrated on elementary examples, they can equally be applied to more complicated tasks resulting from the reader's own research.
This book provides an introduction to band theory and the electronic properties of materials at a level suitable for final-year undergraduates or first-year graduate students. It sets out to provide the vocabulary and quantum-mechanical training necessary to understand the electronic, optical and structural properties of the materials met in science and technology and describes some of the experimental techniques which are used to study band structure today. In order to leave space for recent developments, the Drude model and the introduction of quantum statistics are treated synoptically. However, Bloch's theorem and two tractable limits, a very weak periodic potential and the tight-binding model, are developed rigorously and in three dimensions. Having introduced the ideas of bands, effective masses and holes, semiconductor and metals are treated in some detail, along with the newer ideas of artificial structures such as super-lattices and quantum wells, layered organic substances and oxides. Some recent `hot topics' in research are covered, e.g. the fractional Quantum Hall Effect and nano-devices, which can be understood using the techniques developed in the book. In illustrating examples of e.g. the de Haas-van Alphen effect, the book focuses on recent experimental data, showing that the field is a vibrant and exciting one. References to many recent review articles are provided, so that the student can conduct research into a chosen topic at a deeper level. Several appendices treating topics such as phonons and crystal structure make the book self-contained introduction to the fundamentals of band theory and electronic properties in condensed matter physic today.
This comprehensive text covers the basic physics of the solid state starting at an elementary level suitable for undergraduates but then advancing, in stages, to a graduate and advanced graduate level. In addition to treating the fundamental elastic, electrical, thermal, magnetic, structural, electronic, transport, optical, mechanical and compositional properties, we also discuss topics like superfluidity and superconductivity along with special topics such as strongly correlated systems, high-temperature superconductors, the quantum Hall effects, and graphene. Particular emphasis is given to so-called first principles calculations utilizing modern density functional theory which for many systems now allow accurate calculations of the electronic, magnetic, and thermal properties.
Superb introduction for nonspecialists covers Feynman diagrams, quasi particles, Fermi systems at finite temperature, superconductivity, vacuum amplitude, Dyson's equation, ladder approximation, and more. "A great delight." — Physics Today. 1974 edition.
This textbook series has been designed for final year undergraduate and first year graduate students, providing an overview of the entire field showing how specialized topics are part of the wider whole, and including references to current areas of literature and research.
Since the publication of the first edition over 50 years ago, Introduction to Solid State Physics has been the standard solid state physics text for physics students. The author's goal from the beginning has been to write a book that is accessible to undergraduates and consistently teachable. The emphasis in the book has always been on physics rather than formal mathematics. With each new edition, the author has attempted to add important new developments in the field without sacrificing the book's accessibility and teachability. * A very important chapter on nanophysics has been written by an active worker in the field. This field is the liveliest addition to solid state science during the past ten years * The text uses the simplifications made possible by the wide availability of computer technology. Searches using keywords on a search engine (such as Google) easily generate many fresh and useful references
Presentation of the basic theoretical formulation of Green's functions, followed by specific applications: transport coefficients of a metal, Coulomb gas, Fermi liquids, electrons and phonons, superconductivity, superfluidity, and magnetism. 1984 edition.
A concise, accessible, and up-to-date introduction to solid state physics Solid state physics is the foundation of many of today's technologies including LEDs, MOSFET transistors, solar cells, lasers, digital cameras, data storage and processing. Introduction to Solid State Physics for Materials Engineers offers a guide to basic concepts and provides an accessible framework for understanding this highly application-relevant branch of science for materials engineers. The text links the fundamentals of solid state physics to modern materials, such as graphene, photonic and metamaterials, superconducting magnets, high-temperature superconductors and topological insulators. Written by a noted expert and experienced instructor, the book contains numerous worked examples throughout to help the reader gain a thorough understanding of the concepts and information presented. The text covers a wide range of relevant topics, including propagation of electron and acoustic waves in crystals, electrical conductivity in metals and semiconductors, light interaction with metals, semiconductors and dielectrics, thermoelectricity, cooperative phenomena in electron systems, ferroelectricity as a cooperative phenomenon, and more. This important book: Provides a big picture view of solid state physics Contains examples of basic concepts and applications Offers a highly accessible text that fosters real understanding Presents a wealth of helpful worked examples Written for students of materials science, engineering, chemistry and physics, Introduction to Solid State Physics for Materials Engineers is an important guide to help foster an understanding of solid state physics.