Download Free Field Evaluation Of Insync Adaptive Traffic Signal Control System In Multiple Environments Using Multiple Approaches Book in PDF and EPUB Free Download. You can read online Field Evaluation Of Insync Adaptive Traffic Signal Control System In Multiple Environments Using Multiple Approaches and write the review.

Keywords: Adaptive Traffic Control System (ATCS), Field Evaluation, Before-after Study, Average-car Method, InSync, BlueMAC, Travel Time, Delay.
The primary function of traffic signals is to assign the right of way to vehicular and pedestrian traffic at intersections. Effective traffic signal system reduces congestion, increases intersection capacity, and improves other traffic related performance measures such as safety and mobility. To ensure these goals are met, traffic signals require updated timings to maintain proper operation. These updated signal timings impact not only traffic performance, but overall transportation system efficiency. Because traditional signal timing plans may not accommodate variable and unpredictable traffic demands, a more proactive approach is necessary to ensure properly timed and maintained traffic signals. Adaptive traffic control systems (ATCS) continually collect data and optimize signal timing on a real time basis thereby reducing the aforementioned drawbacks of traditional signal retiming. Understanding and characterizing how these systems are working is important to transportation engineers, and evaluating these systems can provide useful insights. The objective of this dissertation is to develop evaluation methodologies (both operational and economical) for adaptive traffic signal control that go beyond the traditional assessments that use traffic measures of effectiveness (MOEs). Case studies are conducted for Sydney Coordinated Adaptive Traffic System (SCATS) implementations in Alabama, which are useful in objective evaluations of ATCS (in general) for both their current and future operational environments by using microsimulation techniques and/or field data from contemporary data sources. The study contains detailed comparative analyses of traffic operations of the study corridors for existing peak hour traffic conditions under the previous time-of-day (TOD) plan and similar peak hour conditions after SCATS implementation. Although simulation analysis using VISSIM traffic microsimulation software is the primary methodological technique used for evaluating comparative performances, arterial data from other sources (Bluetooth MAC Address Matching and crowdsourced travel data) are also used to perform the evaluations, which is a novel application for this context. While past studies have considered either the arterial or its side-streets performances in their evaluations, this work explored a system-wide approach looking at the composite performance of both dimensions together. Finally, for transportation agencies which operate within budget constraints, it is important to know the real worth of attaining the benefits from ATCS implementations. The last chapter of this dissertation extends the evaluation methodology to include benefit-cost analysis (BCA) by evaluating the ATCS performance for both current and future traffic conditions. This information will be helpful for transportation agencies, planners, and practitioners to understand and justify their ATCS investment and also serve as a guideline for their future ITS projects.
Arterial traffic signal control is a very important aspect of traffic management system. Efficient arterial traffic signal control strategy can reduce delay, stops, congestion, and pollution and save travel time. Commonly used pre-timed or traffic actuated signal control do not have the capability to fully respond to real-time traffic demand and pattern changes. Although some of the well-known adaptive control systems have shown advantageous over the traditional per-timed and actuated control strategies, their centralized architecture makes the maintenance, expansion, and upgrade difficult and costly.
This dissertation develops and evaluates a new adaptive traffic signal control system for arterials. This control system is based on reinforcement learning, which is an important research area in distributed artificial intelligence and has been extensively used in many applications including real-time control. In this dissertation, a systematic comparison between the reinforcement learning control methods and existing adaptive traffic control methods is first presented from the theoretical perspective. This comparison shows both the connections between them and the benefits of using reinforcement learning. A Neural-Fuzzy Actor-Critic Reinforcement Learning (NFACRL) method is then introduced for traffic signal control. NFACRL integrates fuzzy logic and neural networks into reinforcement learning and can better handle the curse of dimensionality and generalization problems associated with ordinary reinforcement learning methods. This NFACRL method is first applied to isolated intersection control. Two different implementation schemes are considered. The first scheme uses a fixed phase sequence and variable cycle length, while the second one optimizes phase sequence in real time and is not constrained to the concept of cycle. Both schemes are further extended for arterial control, with each intersection being controlled by one NFACRL controller. Different strategies used for coordinating reinforcement learning controllers are reviewed, and a simple but robust method is adopted for coordinating traffic signals along the arterial. The proposed NFACRL control system is tested at both isolated intersection and arterial levels based on VISSIM simulation. The testing is conducted under different traffic volume scenarios using real-world traffic data collected during morning, noon, and afternoon peak periods. The performance of the NFACRL control system is compared with that of the optimized pre-timed and actuated control. Testing results based on VISSIM simulation show that the proposed NFACRL control has very promising performance. It outperforms optimized pre-timed and actuated control in most cases for both isolated intersection and arterial control. At the end of this dissertation, issues on how to further improve the NFACRL method and implement it in real world are discussed.
Modern traffic signal control systems have not changed significantly in the past 40-50 years. The most widely applied traffic signal control systems are still time-of-day, coordinated-actuated system, since many existing advanced adaptive signal control systems are too complicated and fathomless for most of people. Recent advances in communications standards and technologies provide the basis for significant improvements in traffic signal control capabilities. In the United States, the IntelliDriveSM program (originally called Vehicle Infrastructure Integration - VII) has identified 5.9GHz Digital Short Range Communications (DSRC) as the primary communications mode for vehicle-to-vehicle (v2v) and vehicle-to-infrastructure (v2i) safety based applications, denoted as v2x. The ability for vehicles and the infrastructure to communication information is a significant advance over the current system capability of point presence and passage detection that is used in traffic control systems. Given enriched data from IntelliDriveSM, the problem of traffic control can be solved in an innovative data-driven and mathematical way to produce robust and optimal outputs. In this doctoral research, three different problems within a v2x environment- "enhanced pseudo-lane-level vehicle positioning", "robust coordinated-actuated multiple priority control", and "multimodal platoon-based arterial traffic signal control", are addressed with statistical techniques and mathematical programming. First, a pseudo-lane-level GPS positioning system is proposed based on an IntelliDriveSM v2x environment. GPS errors can be categorized into common-mode errors and noncommon-mode errors, where common-mode errors can be mitigated by differential GPS (DGPS) but noncommon-mode cannot. Common-mode GPS errors are cancelled using differential corrections broadcast from the road-side equipment (RSE). With v2i communication, a high fidelity roadway layout map (called MAP in the SAE J2735 standard) and satellite pseudo-range corrections are broadcast by the RSE. To enhance and correct lane level positioning of a vehicle, a statistical process control approach is used to detect significant vehicle driving events such as turning at an intersection or lane-changing. Whenever a turn event is detected, a mathematical program is solved to estimate and update the GPS noncommon-mode errors. Overall the GPS errors are reduced by corrections to both common-mode and noncommon-mode errors. Second, an analytical mathematical model, a mixed-integer linear program (MILP), is developed to provide robust real-time multiple priority control, assuming penetration of IntelliDriveSM is limited to emergency vehicles and transit vehicles. This is believed to be the first mathematical formulation which accommodates advanced features of modern traffic controllers, such as green extension and vehicle actuations, to provide flexibility in implementation of optimal signal plans. Signal coordination between adjacent signals is addressed by virtual coordination requests which behave significantly different than the current coordination control in a coordinated-actuated controller. The proposed new coordination method can handle both priority and coordination together to reduce and balance delays for buses and automobiles with real-time optimized solutions. The robust multiple priority control problem was simplified as a polynomial cut problem with some reasonable assumptions and applied on a real-world intersection at Southern Ave. & 67 Ave. in Phoenix, AZ on February 22, 2010 and March 10, 2010. The roadside equipment (RSE) was installed in the traffic signal control cabinet and connected with a live traffic signal controller via Ethernet. With the support of Maricopa County's Regional Emergency Action Coordinating (REACT) team, three REACT vehicles were equipped with onboard equipments (OBE). Different priority scenarios were tested including concurrent requests, conflicting requests, and mixed requests. The experiments showed that the traffic controller was able to perform desirably under each scenario. Finally, a unified platoon-based mathematical formulation called PAMSCOD is presented to perform online arterial (network) traffic signal control while considering multiple travel modes in the IntelliDriveSM environment with high market penetration, including passenger vehicles. First, a hierarchical platoon recognition algorithm is proposed to identify platoons in real-time. This algorithm can output the number of platoons approaching each intersection. Second, a mixed-integer linear program (MILP) is solved to determine the future optimal signal plans based on the real-time platoon data (and the platoon request for service) and current traffic controller status. Deviating from the traditional common network cycle length, PAMSCOD aims to provide multi-modal dynamical progression (MDP) on the arterial based on the real-time platoon information. The integer feasible solution region is enhanced in order to reduce the solution times by assuming a first-come, first-serve discipline for the platoon requests on the same approach. Microscopic online simulation in VISSIM shows that PAMSCOD can easily handle two traffic modes including buses and automobiles jointly and significantly reduce delays for both modes, compared with SYNCHRO optimized plans.
With over 300,000 traffic signals in the United States, it is important to everyone that those traffic signals operate optimally. Unfortunately, according to the Institute of Transportation Engineers over 75% of traffic signal control systems are in need of retiming or upgrade. Agencies and practitioners responsible for these signals face significant budgeting and procedural challenges to maintain and upgrade their systems. Transportation professionals have traditionally lacked accessible and effective tools to identify when and where the greatest benefits may be generated through retiming and system feature selection. They have also lacked methods and tools to identify, select and defend choices of new traffic signal control systems. This is especially true for adaptive traffic signal control systems which are generally more expensive and whose adaptive algorithms are proprietary, invalidating many traditional analysis methods. To address these challenges, a new theoretical framework including queuing and traffic signal control models has been developed in this study to predict the impacts of signal control technology on a given corridor. This framework has been implemented in the STAR Lab Toolkit for Analysis of Traffic and Intersection Control Systems (STATICS) that uses an underlying queuing model interacting with simulated traffic signal control logic to develop traffic measures of effectiveness under different traffic signal control strategies and settings. The STATICS toolkit has been employed by the Oregon Department of Transportation and several other transportation agencies to analyze their corridors and select advanced traffic signal control systems. Furthermore, a new cost-effective adaptive traffic signal control system called the Swarm-Intelligence Based Adaptive Signal System (SIBASS) is proposed to address situations where optimum optimization strategies change with traffic conditions. Compared to the existing adaptive signal control systems, SIBASS carries an important advantage that makes it robust under communication difficulties. It operates at the individual intersection level in a flat hierarchy that does not use a central controller. Instead, each intersection self-assigns a role based on current traffic conditions and the current roles of neighboring intersections. Each role uses different optimization goals, allowing SIBASS to change intersection optimization criteria based on the current role chosen by that intersection. By designing cooperative features into SIBASS it is possible to create corridor coordination and optimization. This is accomplished using the characteristics of the swarm rather than external imposition to create order. SIBASS is evaluated via simulation under varied traffic conditions. SIBASS consistently outperformed the existing systems tested in this study. On average, SIBASS reduced system average per vehicle delay by approximately 3.5 seconds and system average queue lengths by 20 feet in the tested scenarios. New approaches to tailoring traffic signal control optimization strategies to current traffic conditions and desired operational goals are enabled by SIBASS. Combined, STATICS and SIBASS offer a solid basis upon which to build future tools and methods to analyze traffic signal control systems. Future STATICS analytical modules may include estimating environmental performance and costs as well as improvements to pedestrian modeling and mobility analysis. Environmental and pedestrian considerations also present opportunities for improvement of SIBASS. New optimization roles can be created for SIBASS to address environmental and pedestrian optimization issues.
Traffic signals help to maintain order in urban traffic networks and reduce vehicle conflicts by dynamically assigning right-of-way to different vehicle movements. However, by temporarily stopping vehicle movements at regular intervals, traffic signals are a major source of urban congestion and cause increased vehicle delay, fuel consumption, and environmental pollution. Connected and Autonomous Vehicle technology may be utilized to optimize traffic operations at signalized intersections, since connected vehicles have the ability to communicate with the surrounding infrastructure and autonomous vehicles can follow the instructions from the signal or a central control system. Connected vehicle information received by a signal controller can be used to help adjust signal timings to tailor to the specific dynamic vehicle demand. Information about the signal timing plan can then be communicated back to the vehicles so that they can adjust their speeds/trajectories to further improve traffic operations. Based on a thorough literature review of existing studies in the area of signal control utilizing information from connected and autonomous vehicles, three research gaps are found: 1) application are limited to unrealistic intersection configurations; 2) methods are limited to a single mode; or, 3) methods only optimize the average value of measure of effectiveness while ignoring the distribution among vehicles. As a part of this dissertation, several methods will be proposed to increase computational efficiency of an existing CAV-based joint signal timing and vehicle trajectory optimization algorithm so that it can be applied to more realistic intersection settings without adding computational burden. Doing so requires the creation of new methods to accommodate features like multiple lanes on each approach, more than two approaches and turning maneuvers. Methods to incorporate human-driven cooperative vehicles and pedestrians are also proposed and tested. A more equitable traffic signal control method is also designed.
Adaptive traffic signal control (ATSC) system serves a significant role for relieving urban traffic congestion. The system is capable of adjusting signal phases and timings of all traffic lights simultaneously according to real-time traffic sensor data, resulting in a better overall traffic management and an improved traffic condition on road. In recent years, deep reinforcement learning (DRL), one powerful paradigm in artificial intelligence (AI) for sequential decision-making, has drawn great attention from transportation researchers. The following three properties of DRL make it very attractive and ideal for the next generation ATSC system: (1) model-free: DRL reasons about the optimal control strategies directly from data without making additional assumptions on the underlying traffic distributions and traffic flows. Compared with traditional traffic optimization methods, DRL avoids the cumbersome formulation of traffic dynamics and modeling; (2) self-learning: DRL self-learns the signal control knowledge from traffic data with minimal human expertise; (3) simple data requirement: by using large nonlinear neural networks as function approximators, DRL has enough representation power to map directly from simple traffic measurements, e.g. queue length and waiting time, to signal control policies. This thesis focuses on building data-driven and adaptive controllers via deep reinforcement learning for large-scale traffic signal control systems. In particular, the thesis first proposes a hierarchical decentralized-to-centralized DRL framework for large-scale ATSC to better coordinate multiple signalized intersections in the traffic system. Second, the thesis introduces efficient DRL with efficient exploration for ATSC to greatly improve sample complexity of DRL algorithms, making them more suitable for real-world control systems. Furthermore, the thesis combines multi-agent system with efficient DRL to solve large-scale ATSC problems that have multiple intersections. Finally, the thesis presents several algorithmic extensions to handle complex topology and heterogeneous intersections in real-world traffic networks. To gauge the performance of the presented DRL algorithms, various experiments have been conducted and included in the thesis both on small-scale and on large-scale simulated traffic networks. The empirical results have demonstrated that the proposed DRL algorithms outperform both rule-based control policy and commonly-used off-the-shelf DRL algorithms by a significant margin. Moreover, the proposed efficient MARL algorithms have achieved the state-of-the-art performance with improved sample-complexity for large-scale ATSC.
This report serves as a comprehensive guide to traffic signal timing and documents the tasks completed in association with its development. The focus of this document is on traffic signal control principles, practices, and procedures. It describes the relationship between traffic signal timing and transportation policy and addresses maintenance and operations of traffic signals. It represents a synthesis of traffic signal timing concepts and their application and focuses on the use of detection, related timing parameters, and resulting effects to users at the intersection. It discusses advanced topics briefly to raise awareness related to their use and application. The purpose of the Signal Timing Manual is to provide direction and guidance to managers, supervisors, and practitioners based on sound practice to proactively and comprehensively improve signal timing. The outcome of properly training staff and proactively operating and maintaining traffic signals is signal timing that reduces congestion and fuel consumption ultimately improving our quality of life and the air we breathe. This manual provides an easy-to-use concise, practical and modular guide on signal timing. The elements of signal timing from policy and funding considerations to timing plan development, assessment, and maintenance are covered in the manual. The manual is the culmination of research into practices across North America and serves as a reference for a range of practitioners, from those involved in the day to day management, operation and maintenance of traffic signals to those that plan, design, operate and maintain these systems.
Strengthen programs of family and community engagement to promote equity and increase student success! When schools, families, and communities collaborate and share responsibility for students′ education, more students succeed in school. Based on 30 years of research and fieldwork, the fourth edition of the bestseller School, Family, and Community Partnerships: Your Handbook for Action, presents tools and guidelines to help develop more effective and more equitable programs of family and community engagement. Written by a team of well-known experts, it provides a theory and framework of six types of involvement for action; up-to-date research on school, family, and community collaboration; and new materials for professional development and on-going technical assistance. Readers also will find: Examples of best practices on the six types of involvement from preschools, and elementary, middle, and high schools Checklists, templates, and evaluations to plan goal-linked partnership programs and assess progress CD-ROM with slides and notes for two presentations: A new awareness session to orient colleagues on the major components of a research-based partnership program, and a full One-Day Team Training Workshop to prepare school teams to develop their partnership programs. As a foundational text, this handbook demonstrates a proven approach to implement and sustain inclusive, goal-linked programs of partnership. It shows how a good partnership program is an essential component of good school organization and school improvement for student success. This book will help every district and all schools strengthen and continually improve their programs of family and community engagement.