Download Free Fiber Optics In The Power Industry Book in PDF and EPUB Free Download. You can read online Fiber Optics In The Power Industry and write the review.

A guide to the physics of Dynamic Temperature Sensing (DTS) measurements including practical information about procedures and applications Distributed Fiber Sensing and Dynamic Ratings of Power Cable offers a comprehensive review of the physics of dynamic temperature sensing measurements (DTS), examines its functioning, and explores possible applications. The expert authors describe the available fiber optic cables, their construction, and methods of installation. The book also includes a discussion on the variety of testing methods with information on the advantages and disadvantages of each. The book reviews the application of the DTS systems in a utility environment, and highlights the possible placement of the fiber optic cable. The authors offer a detailed explanation of the cable ampacity (current rating) calculations and examines how the measured fiber temperature is used to obtain the dynamic cable rating information in real time. In addition, the book details the leading RTTR suppliers, including the verification methods they used before their products come to market. Information on future applications of the DTS technology in other aspects of power system operation is also discussed. This important book: • Explains the required calibration procedures and utility performance tests needed after the installation of a DTS system • Includes information on the various practical aspects of communicating measured and computed quantities to the transmission system operator • Reviews possible applications of the technology to fault location, vibration monitoring, and general surveying of land and submarine cable routes Written for cable engineers and manufacturers, Distributed Fiber Sensing and Dynamic Ratings of Power Cable is an authoritative guide to the physics of DTS measurements and contains information about costs, installation procedures, maintenance, and various applications.
Textbook on the physical principles of optical fibers - for advanced undergraduates and graduates in physics or electrical engineering.
Within the past few decades, information technologies have been evolving at a tremendous rate, causing profound changes to our world and our ways of life. In particular, fiber optics has been playing an increasingly crucial role within the telecommunication revolution. Not only most long-distance links are fiber based, but optical fibers are increasingly approaching the individual end users, providing wide bandwidth links to support all kinds of data-intensive applications such as video, voice, and data services. As an engineering discipline, fiber optics is both fascinating and challenging. Fiber optics is an area that incorporates elements from a wide range of techno- gies including optics, microelectronics, quantum electronics, semiconductors, and networking. As a result of rapid changes in almost all of these areas, fiber optics is a fast evolving field. Therefore, the need for up-to-date texts that address this growing field from an interdisciplinary perspective persists. This book presents an overview of fiber optics from a practical, engineering perspective. Therefore, in addition to topics such as lasers, detectors, and optical fibers, several topics related to electronic circuits that generate, detect, and process the optical signals are covered. In other words, this book attempts to present fiber optics not so much in terms of a field of “optics” but more from the perspective of an engineering field within “optoelectronics.
This text presents the history of the development of fibre optic technology, explaining the scientific challenges that needed to be overcome, the range of applications and future potential for this fundamental communications technology.
This book discusses in detail fiber optic communications systems. It describes major components including fibers, cables, emission sources, detectors, modulators, and repeaters, as well as total system designs.
This book is the first to address the field of structurally integrated fiber optic sensors. Fiber optic sensors embedded within materials and systems are able to measure a variety of parameters (i.e. temperature, vibration, deformation, strain, etc.) that allows for real time non-destructive evaluation. Examples include the following: monitoring structural fatigue in aging aircraft or loads in bridge structures. In more advanced applications, fiber optic sensors control actuators that allow materials to adapt to their environment. This gives rise to the names, "smart," "intelligent," and/or "adaptive" materials or structures. Structural Monitoring with Fiber Optic Technology is the firs single author book on the new field of fiber optic structural sensing. As such it provides: coverage of the fundamentals of the technology, a coherent and systematic discussion on the most important aspects of the subject, a broad view of the subject, while retaining a degree of focus on those advances most significant in terms of their future potential, particularly in regard to broad implementation of the technology. The book provides an introduction to the relevant value to structural monitoring. It also highlights the advantages of fiber optic based sensors over conventional electrical measurement technology. The book richly illustrates the subject matter with 615 figures and provides many examples of fiber optic structural sensing, including a detailed overview of a number of major field site applications. Most of these large scale applications are drawn from the civil engineering community as they have been the first to strongly embrace fiber optic structural monitoring. This is especiallytrue for bridges, where innovative new designs and the use of fiber reinforced polymer composite materials to replace steel represents a major advance that is expected to revolutionize the construction industry. Examples include new bridges, which are serving as testbeds for these new materials and are instrumented with arrays of fiber optic structural sensors. In one case, this state-of-the-art monitoring system permits engineers at a distant site to track the response of the bridge to traffic loads and keep an eye on the long term performance of the new materials. Fiber optic structural sensing technology is equally applicable to other industrial sectors, such as the aerospace and marine industries. Indeed, several examples of ships being instrumented with arrays of fiber optic sensors are also included. * The author directed one of the leading laboratories in the development of this technology and its application to civil engineering * Provides a strong, concise foundation in the basics of the technology * Includes many examples of the application of the technology, including many major field site case studies * Richly illustrated with 615 figures, many redrawn to make them easier to understand; also includes over 600 references * Written in a style designed to help the reader unfamiliar with fiber optic technology appreciate what can be accomplished with this new form of structural monitoring