Download Free Fib Model Code For Concrete Structures 2010 Book in PDF and EPUB Free Download. You can read online Fib Model Code For Concrete Structures 2010 and write the review.

The International Federation for Structural Concrete (fib) is a pre-normative organization. 'Pre-normative' implies pioneering work in codification. This work has now been realized with the fib Model Code 2010. The objectives of the fib Model Code 2010 are to serve as a basis for future codes for concrete structures, and present new developments with regard to concrete structures, structural materials and new ideas in order to achieve optimum behaviour. The fib Model Code 2010 is now the most comprehensive code on concrete structures, including their complete life cycle: conceptual design, dimensioning, construction, conservation and dismantlement. It is expected to become an important document for both national and international code committees, practitioners and researchers. The fib Model Code 2010 was produced during the last ten years through an exceptional effort by Joost Walraven (Convener; Delft University of Technology, The Netherlands), Agnieszka Bigaj-van Vliet (Technical Secretary; TNO Built Environment and Geosciences, The Netherlands) as well as experts out of 44 countries from five continents.
The objectives of MC2010 are to (a) serve as a basis for future codes for concrete structures, and (b) present new developments with regard to concrete structures, structural materials and new ideas in order to achieve optimum behaviour. MC2010 includes the whole life cycle of a concrete structure, from design and construction to conservation (assessment, maintenance, strengthening) and dismantlement, in one code for buildings, bridges and other civil engineering structures. Design is largely based on performance requirements. The chapter on materials is extended with new types of concrete and reinforcement (such as fibres and non-metallic reinforcements). The fib Model Code 2010 also gives corresponding explanations in a separate column of the document. Additionally, MC2010 is supported by background documents that have already been (or will soon be) published in fib bulletins and journal articles. MC2010 is now the most comprehensive code on concrete structures, including their complete life cycle: conceptual design, dimensioning, construction, conservation and dismantlement.
This design code for concrete structures is the result of a complete revision to the former Model Code 1978, which was produced jointly by CEB and FIP. The 1978 Model Code has had a considerable impact on the national design codes in many countries. In particular, it has been used extensively for the harmonisation of national design codes and as basic reference for Eurocode 2. The 1990 Model Code provides comprehensive guidance to the scientific and technical developments that have occurred over the past decade in the safety, analysis and design of concrete structures. It has already influenced the codification work that is being carried out both nationally and internationally and will continue so to do.
The FRC-2014 Workshop Fibre Reinforced Concrete: from Design to Structural Applications was the first ACI-fib joint technical event. The Workshop, held at Polytechnique Montreal (Canada) on July 24th and 25th 2014, was attended by 116 participants from 25 countries and 4 continents. The first international FRC workshop was held in Bergamo (Italy) in 2004. At that time, the lack of specific building codes and standards was identified as the main inhibitor to the application of this technology in engineering practice. Ten years after Bergamo, many of the objectives identified at that time have been achieved. The use of fibre reinforced concrete (FRC) for designing structural members in bending and shear has recently been addressed in the fib Model Code 2010. Steel fibre reinforced concrete (SFRC) has also been used structurally in several building and bridge projects in Europe and North-America. SFRC has been widely used in segmental tunnel linings all over the world. Members of ACI544 and fib TG-4.1 have been involved in writing code based specifications for the design of FRC structural members. More than fifty papers were presented at the Workshop from which forty-four were selected for this joint ACI/fib publication. The papers are organised in the document under six themes: Design guidelines and specifications, Material properties for design, Behaviour and design of beams and columns, Behaviour and design of slabs and other structures, Behaviour and design of foundations and underground components, and finally, Applications in structure and underground construction projects.
fib Bulletin 34 addresses Service Life Design (SLD) for plain concrete, reinforced concrete and pre-stressed concrete structures, with a special focus on design provisions for managing the adverse effects of degradation. Its objective is to identify agreed durability related models and to prepare the framework for standardization of performance based design approaches. Four different options for SLD are given: - a full probabilistic approach, - a semi probabilistic approach (partial factor design), - deemed to satisfy rules, - avoidance of deterioration. The service life design approaches described in this document may be applied for the design of new structures, for updating the service life design if the structure exists and real material properties and/or the interaction of environment and structure can be measured (real concrete covers, carbonation depths), and for calculating residual service life. The bulletin is divided into five chapters: 1. General 2. Basis of design 3. Verification of Service Life Design 4. Execution and its quality management 5. Maintenance and condition control It also includes four informative annexes, which give background information and examples of procedures and deterioration models for the application in SLD. The format of Bulletin 34 follows the CEB-FIP tradition for Model Codes: the main provisions are given on the right-hand side of the page, and on the left-hand side, the comments. Note: An Italian translation of Bulletin 34 is also available; contact us for further details.
Building with precast concrete elements is one of the most innovative forms of construction. This book serves as an introduction to this topic, including examples, and thus supplies all the information necessary for conceptual and detailed design.
This volume highlights the latest advances, innovations, and applications in the field of fibre-reinforced concrete (FRC), as presented by scientists and engineers at the RILEM-fib X International Symposium on Fibre Reinforced Concrete (BEFIB), held in Valencia, Spain, on September 20-22, 2021. It discusses a diverse range of topics concerning FRC: technological aspects, nanotechnologies related with FRC, mechanical properties, long-term properties, analytical and numerical models, structural design, codes and standards, quality control, case studies, Textile-Reinforced Concrete, Geopolymers and UHPFRC. After the symposium postponement in 2020, this new volume concludes the publication of the research works and knowledge of FRC in the frame of BEFIB from 2020 to 2021 with the successful celebration of the hybrid symposium BEFIB 2021. The contributions present traditional and new ideas that will open novel research directions and foster multidisciplinary collaboration between different specialists.
Precast reinforced and prestressed concrete frames provide a high strength, stable, durable and robust solution for any multi-storey structure, and are widely regarded as a high quality, economic and architecturally versatile technology for the construction of multi-storey buildings. The resulting buildings satisfy a wide range of commercial and industrial needs. Precast concrete buildings behave in a different way to those where the concrete is cast in-situ, with the components subject to different forces and movements. These factors are explored in detail in the second edition of Multi-Storey Precast Concrete Framed Structures, providing a detailed understanding of the procedures involved in precast structural design. This new edition has been fully updated to reflect recent developments, and includes many structural calculations based on EUROCODE standards. These are shown in parallel with similar calculations based on British Standards to ensure the designer is fully aware of the differences required in designing to EUROCODE standards. Civil and structural engineers as well as final year undergraduate and postgraduate students of civil and structural engineering will all find this book to be thorough overview of this important construction technology.
This book describes how, given the global challenge of a shortage of natural resources in the 21st century, the recycling of waste concrete is one of the most important means of implementing sustainable construction development strategies. Firstly, the book presents key findings on the micro- and meso-structure of recycled aggregate concrete (RAC), while the second part focuses on the mechanical properties of RAC: the strength, elastic modulus, Poisson’s ratio, stress-strain curve, etc. The third part of the book explores research on the durability of RAC: carbonization, chloride penetration, shrinkage and creep. It then presents key information on the mechanical behavior and seismic performance of RAC elements and structures: beams, columns, slabs, beam-column joints, and frames. Lastly, the book puts forward design guidelines for recycled aggregate concrete structures. Taken as a whole, the research results – based on a series of investigations the author has condu cted on the mechanical properties, durability and structural performance of recycled aggregate concrete (RAC) over the past 10 years – demonstrate that, with proper design and construction, it is safe and feasible to utilize RAC structures in civil engineering applications. The book will greatly benefit researchers, postgraduates, and engineers in civil engineering with an interest in this field.