Download Free Fertilization In Higher Plants Book in PDF and EPUB Free Download. You can read online Fertilization In Higher Plants and write the review.

Biotechnological methods are opening new ways in plant breeding. They allow novel strategies for improving crop productivity and quality, especially in the agrofood sector. The molecular mechanisms underlying these biotechnological approaches are presented here. Topics included are: pollen development, pollen tube growth, macrosporogenesis and fertilization and the effects of pesticides on sexual plant reproduction. Fertilization in higher plants is a complex process consisting of two events, the fusion of the egg with one sperm cell resulting in the diploid zygote, and the fusion of embryosac nuclei with another sperm cell, leading to a triploid endosperm. This "double fertilization" is preceded by the pollination process and a long lasting interaction between the dipoid pistil and the haploid pollen tube (progamic phase). Fertilization of flowering plants results in the formation of seeds and fruits, our basic food supply.
Reproductive biology is the basis of species improvement and a thorough understanding of this is needed for plant improvement, whether by conventional or biotechnological methods. This book presents an up to date and comprehensive description of reproduction in lower plants, gymnosperms and higher plants. It covers general plant biology, pollinatio
In recent years there has been a growing awareness of the importance of reproductive biology to crop production and there has been a tremendous increase in research on reproductive structures of higher plants. Presented here is a wide information of different aspects of micro- and macrosporogenesis, pollen-stigma interaction and recognition, pollen tube growth, cytoskeleton, in vitro and in vivo gamete fusion, and incompatibility. The most advanced techniques employed in studies on reproductive biology of higher plants are described in detail.
In Vitro Culture of Higher Plants presents an up-to-date and wide- ranging account of the techniques and applications, and has primarily been written in response to practical problems. Special attention has been paid to the educational aspects. Typical methodological aspects are given in the first part: laboratory set-up, composition and preparation of media, sterilization of media and plant material, isolation and (sub)culture, mechanization, the influence of plant and environmental factors on growth and development, the transfer from test-tube to soil, aids to study. The question of why in vitro culture is practised is covered in the second part: embryo culture, germination of orchid seeds, mericloning of orchids, production of disease-free plants, vegetative propagation, somaclonal variation, test-tube fertilization, haploids, genetic manipulation, other applications in phytopathology and plant breeding, secondary metabolites.
This book maintains that higher plants manifest some degree of sexual selection, and it begins to build a framework that unifies many features of plant reproduction previously considered unrelated. Reviewing evidence for sexual selection in plants, the authors discuss possible male-female interactions, concluding with an extensive set of hypotheses for testing. Mechanisms that could be employed in sexual selection in plants include various cellular mechanisms, such as both nuclear and cytoplasmic genetics, B chromosomes, and paternal contributions to the zygote, as well as abortion, double fertilization, delayed fertilization, and certain forms of polyembryony. This study compares the consequences of these processes for the evolution of mate choice in "gymnosperms" and angiosperms.
Comprising about one hundred plates this atlas documents and describes the processes concerning the sexual reproduction in higher plants. It is dividedinto three parts: - Anther Development - Pistil Development - Progamic Phase and Fertilization. The scanning, transmission electron and light micrographs are all of immaculate quality and - for the viewer's orientation - almost each plate is complemented by a scheme showing a larger area of the plant indicating the site of the section. Together with instructive texts, the often striking images provide a valuable introduction into plant reproductive cell structures for researchers and advanced students of genetics, plantbreeding and cell biology.
Black & white print. Concepts of Biology is designed for the typical introductory biology course for nonmajors, covering standard scope and sequence requirements. The text includes interesting applications and conveys the major themes of biology, with content that is meaningful and easy to understand. The book is designed to demonstrate biology concepts and to promote scientific literacy.
The establishment of polarity is a fundamental feature in eukaryotic development. Polarity in Plants provides an account of current research into the mechanisms by which polarity is generated at the level of the cell, organ and organism in plants, drawing especially on recent work with model organisms. The emphasis is on the use of the techniques of molecular genetics to dissect molecular mechanisms. This is the first volume to bring together the diverse aspects of polarity in plant development.
Great progress has been made in our understanding of pollen-pistil interactions and self-incompatibility (SI) in flowering plants in the last few decades. This book covers a broad spectrum of research into SI, with accounts by internationally renowned scientists. It comprises two sections: Evolution and Population Genetics of SI, Molecular and Cell Biology of SI Systems. The reader will gain an insight into the diversity and complexity of these polymorphic cell-cell recognition and rejection systems. Heteromorphic and homomorphic SI systems and our current understanding of the evolution and phylogeny of these systems, based on the most recent molecular sequence data, are covered. Further, the book presents major advances in our knowledge of the pistil and pollen S-determinants and other unlinked components involved in SI, as well as the apparently diverse cellular regulatory mechanisms utilised to ensure inhibition of “self” pollen.