Download Free Ferromagnetodynamics Book in PDF and EPUB Free Download. You can read online Ferromagnetodynamics and write the review.

A comprehensive collection of overview articles on novel microscopy methods for imaging magnetic structures on the nanoscale. Written by leading scientists in the field, the book covers synchrotron based methods, spin-polarized electron methods, and scanning probe techniques. It constitutes a valuable source of reference for graduate students and newcomers to the field.
The aim of this volume is to advance the understanding of the fundamental properties of fine magnetic particles and to discuss the latest developments from both the theoretical and experimental viewpoints, with special emphasis being placed on the applications in different branches of science and technology. All aspects of fine magnetic particles are covered in the 46 papers. The topics are remarkably interdisciplinary covering theory, materials preparation, structural characterization, optical and electrical properties, magnetic properties studied by different techniques and applications. Some new fundamental properties, such as quantum tunneling and transverse fluctuations of magnetic moments are also explored. Research workers involved in these aspects of materials technology will find this book of great interest.
The unique properties of ferromagnetic resonance (FMR) in magnetodielectric solids are widely used to create highly efficient analog information processing devices in the microwave range. Such devices include filters, delay lines, phase shifters, non-reciprocal and non-linear devices, and others. This book examines magnetic resonance and ferromagnetic resonance under a wide variety of conditions to study physical properties of magnetodielectric materials. The authors explore the properties in various mediums that significantly complicate magnetic resonance and provide a summary of related advances obtained during the last two decades. It also covers the emergence of new branches of the spectrum and anomalous dependencies on the magnetic field. Key Features: Reviews basic principles of the science of crystallographic symmetry and anisotropic solid-state properties Addresses the inhomogeneous nature of the distribution of the magnetization in the material being studied Explains the mathematic methods used in the calculation of anisotropic solids of a solid Provides the reader with a path to substitute electromagnetic waves when magnetostatic apparatus prove insufficient
This book offers systematic and up-to-date treatment of the whole area of magnetic domains. It contains many contributions that have not been published before. The comprehensive survey of this important area gives a good introduction to students and is also interesting to researchers.
This book presents recent scientific achievements in the investigation of magnetization dynamics in confined magnetic systems. Introduced by Bloch as plane waves of magnetization in unconfined ferromagnets, spin waves currently play an important role for description of very small systems.Spin wave confinement effect was experimentally discovered in the 1990s in permalloy microstripes. The diversity of systems where this effect is observed has been steadily growing since then, most of which will be addressed in this book. The book includes six chapters which originate from different groups of experimentalists and theoreticians dominating the field since the discovery of the effect. Different chapters of the book reflect different facets of spin wave confinement, providing a comprehensive description of the effect and its place in modern magnetism. It will be of value for scientists and engineers working on magnetic storage elements and magnetic logic, and is also suitable as an advanced textbook for graduate students.
"The book reviews all the aspects of recent developments in research on skyrmions, from the presentation of the observation and characterization techniques to the description of physical properties and expected applications. It will be of great use for all scientists working in this field." – Albert Fert, 2007 Nobel Laureate in Physics (from the Foreword) A skyrmion is a tiny region of reversed magnetization – quasiparticles since they are not present except in a magnetic state, and also give rise to physics that cannot be described by Maxwell’s equations. These particles are fascinating subjects for theoretical and experimental studies. Moreover, as a new type of magnetic domain structure with special topological structures, skyrmions feature outstanding magnetic and transport properties and may well have applications in data storage and other advanced spintronic devices, as readers will see in this book. Chapters address the relationships between physical properties of condensed matter, such as the AB effect, Berry phase effect, quantum Hall effect, and topological insulators. Overall, it provides a timely introduction to the fundamental aspects and possible applications of magnetic skyrmions to an interdisciplinary audience from condensed matter physics, chemistry, and materials science.
From the first application of the oxide magnetite as a compass in China in ancient times, and from the early middle ages in Europe, magnetic materials have become an indispensable part of our daily life. Magnetic materials are used ubiquitously in the modern world, in fields as diverse as, for example, electrical energy transport, high-power electro-motors and generators, telecommunication systems, navigation equipment, aviation and space operations, micromechanical automation, medicine, magnetocaloric refrigeration, computer science, high density recording, non-destructive testing of materials, and in many household applications. Research in many of these areas continues apace. The progress made in recent years in computational sciences and advanced material preparation techniques has dramatically improved our knowledge of fundamental properties and increased our ability to produce materials with highly-tailored magnetic properties, even down to the nanoscale dimension. Containing approximately 120 chapters written and edited by acknowledged world leaders in the field, The Handbook of Magnetism and Advanced Magnetic Materials provides a state-of-the-art, comprehensive overview of our current understanding of the fundamental properties of magnetically ordered materials, and their use in a wide range of sophisticated applications. The Handbook is published in five themed volumes, as follows: Volume 1- Fundamentals and Theory Volume 2- Micromagnetism Volume 3- Novel Techniques for Characterizing and Preparing Samples Volume 4- Novel Materials Volume 5- Spintronics and Magnetoelectronics
Solid State Physics, Volume 72, the latest release in this long-running serial, highlights new advances in the field with this new volume presenting interesting and timely chapters authored by an international board of experts. Chapters in this release include Roadmap: The influence of the internal domain wall structure on spin wave band structure in periodic magnetic stripe domain patterns, The influence of the internal domain wall structure on spin wave band structure in periodic magnetic stripe domain patterns, and more. Provides the authority and expertise of leading contributors from an international board of authors Presents the latest release in the Solid State Physics series