Download Free Ferroelectric Thin Films V Volume 433 Book in PDF and EPUB Free Download. You can read online Ferroelectric Thin Films V Volume 433 and write the review.

The MRS Symposium Proceeding series is an internationally recognised reference suitable for researchers and practitioners.
This book, the eighth in a popular series from MRS, features the latest technical information on ferroelectric thin films from an international mix of academia, industry and government organizations. Recent results for DRAM and FERAM devices, as well as enhancements in material performance for these applications, are presented. Significant advances in understanding leakage current, frequency dependence of the coercive field, hydrogen annealing effects, piezoelectric constants, and domain switching responses are highlighted. The development of ferroelectric thin films for piezoelectric applications are also reviewed, as are improved film-fabrication procedures including chemical vapor deposition and chemical solution deposition. Topics include: BST thin films and DRAM; integration and electrodes; Bi-based thin-film ferroelectrics; Pb-based thin-film ferroelectrics; fundamental properties of thin-film ferroelectrics; ferroelectric gate materials and devices; and piezoelectric, pyro-electric and capacitor devices and novel processing strategies.
This book is the latest in a continuing series on rapid thermal processing and related topics. It embraces a diversity of research, development and manufacturing activities that require rapid thermal and integrated processing techniques which are recognized by their acronyms, such as rapid thermal annealing (RTA), rapid thermal processing (RTP), rapid thermal chemical vapor deposition (RTCVP), rapid thermal oxidation (RTO), and others. This fifth anniversary volume reports notable advances in the use of rapid thermal techniques in processing science and technology, and for process control in industrial fabrication facilities. It is organized around progress obtained through: evaluation methodology; equipment and process modelling; temperature control; defects and diffusion associated with annealing; metallizations such as silicidation; novel processing of sol-gel and magnetic films; dielectric growth and deposition; and silicon or silicon-germanium film deposition.
Papers from the fall 1994 symposium present research and developments from academia, government, organizations, and industry in ferroelectric thin films, organized in sections on characterization, layered structure ferroelectrics, photonic phenomena, process integration, dram thin film technology, solution deposition, and piezoelectric and IR thin film technology. Highlights include the first public technical disclosures of Y1 nonvolatile memory material. Annotation copyright by Book News, Inc., Portland, OR
Interest in the mechanical properties of thin films remains high throughout the world, as evidenced by the large international contingent represented in this book. With regard to stresses, techniques for sorting out residual stress and strain states are becoming more varied and sophisticated. Discussions include Raman scattering, nonlinear acoustic responses and back-scattered electron imaging microscopies, as well as the more standard wafer-bending and X-ray techniques. Spectroscopy, indenting and the burgeoning field of nanoprobe imaging for the characterization of mechanical properties of thin films are also highlighted. Topics include: mechanical properties of films and multilayers; fracture and adhesion; nanoindentation of films and surfaces; mechanical property methods and modelling; tribological properties of thin films; properties of polymer films; stress effects in thin films and interconnects; epitaxy and strain relief mechanisms, measurements.
An interdisciplinary group of materials scientists, physicists, chemists and engineers come together in this book to discuss recent advances in the structure and morphology of thin films. Both scientific and technological issues are addressed. Work on thin films for a host of applications including microelectronics, optics, tribology, biomedical technologies and microelectromechanical systems (MEMS) are featured. Topics include: kinetics of growth; grain growth; instabilities, segregation and ordering; silicides; metallization; stresses in thin films; deposition and growth simulations; energetic growth processes; diamond films and carbide and nitride films.
The impetus for the rapid development of thin film technology, relative to that of bulk materials, is its application to a variety of microelectronic products. Many of the characteristics of thin film ferroelectric materials are utilized in the development of these products - namely, their nonvolatile memory and piezoelectric, pyroelectric, and electro-optic properties. It is befitting, therefore, that the first of a set of three complementary books with the general title Integrated Ferroelectric Devices and Technologies focuses on the synthesis of thin film ferroelectric materials and their basic properties. Because it is a basic introduction to the chemistry, materials science, processing, and physics of the materials from which integrated ferroelectrics are made, newcomers to this field as well as veterans will find this book self-contained and invaluable in acquiring the diverse elements requisite to success in their work in this area. It is directed at electronic engineers and physicists as well as process and system engineers, ceramicists, and chemists involved in the research, design, development, manufacturing, and utilization of thin film ferroelectric materials.
Based on an international gathering of scientists and engineers from 17 countries, this book, the fifth in a continuing series, assesses microwave processing of materials as an emerging technology. Significant advances in understanding and control of microwave energy and its use in the processing and testing of materials are outlined. Future research and development needs are also explored. Topics include: scale-up and commercialization; microwave nondestructive testing; microwave processing; microwave system design; dielectric properties measurements and analysis; modelling of microwave heating; microwave interactions and mechanisms; microwave processing using variable frequency sources; alternate microwave sources; remediation of hazardous waste; temperature modelling and measurements; microwave processing of polymers; and plasma processing.
Interest in the mechanical properties of thin films remains high throughout the world, as evidenced by the large international contingent represented in this book. With regard to stresses, techniques for sorting out residual stress and strain states are becoming more varied and sophisticated. Discussions include Raman scattering, nonlinear acoustic responses and back-scattered electron imaging microscopies, as well as the more standard wafer-bending and X-ray techniques. Spectroscopy, indenting and the burgeoning field of nanoprobe imaging for the characterization of mechanical properties of thin films are also highlighted. Topics include: mechanical properties of films and multilayers; fracture and adhesion; nanoindentation of films and surfaces; mechanical property methods and modelling; tribological properties of thin films; properties of polymer films; stress effects in thin films and interconnects; epitaxy and strain relief mechanisms, measurements.