Download Free Ferroelectric And Antiferroelectric Liquid Crystals Book in PDF and EPUB Free Download. You can read online Ferroelectric And Antiferroelectric Liquid Crystals and write the review.

The study of ferroelectricity is a branch of solid state physics which has shown rapid growth during the recent years. Ferroelectric materials exhibit unusual electric properties which make them useful in modern (opto)electronic technology, esp. display technology. Ferroelectric and antiferroelectric liquid crystals, including also various polymer forms, are the hottest research topic today in liquid crystals. The field is at the very beginning of industrial exploitation - a sensitive phase in which a good reference work is needed and will have a broad spectrum of readers both at universities and in industry.
This book presents the basic physics of ferroelectric and antiferroelectric liquid crystals in a simple and transparent way. It treats both the basic and the applied aspects of ferroelectric and antiferroelectric liquid crystal research, starting from the discovery of ferroelectricity in liquid crystals in 1975 and ending with the resonant X-ray experiment in ferrielectric and antiferrielectric phases in 1998. Particular attention is paid to the optical properties, electrooptic effects, phase transitions and experimental methods used in liquid crystal research. Special chapters are devoted to dielectric spectroscopy, light scattering, NMR, STM and AFM in complex fluids. The more than 300 illustrations help to present the basic physics of liquid crystalline ferroelectrics and antiferroelectrics in a way that can be easily followed by students, engineers and scientists dealing with liquid crystal research.
This book presents the basic physics of ferroelectric and antiferroelectric liquid crystals in a simple and transparent way. It treats both the basic and the applied aspects of ferroelectric and antiferroelectric liquid crystal research, starting from the discovery of ferroelectricity in liquid crystals in 1975 and ending with the resonant X-ray experiment in ferrielectric and antiferrielectric phases in 1998. Particular attention is paid to the optical properties, electrooptic effects, phase transitions and experimental methods used in liquid crystal research. Special chapters are devoted to dielectric spectroscopy, light scattering, NMR, STM and AFM in complex fluids. The more than 300 illustrations help to present the basic physics of liquid crystalline ferroelectrics and antiferroelectrics in a way that can be easily followed by students, engineers and scientists dealing with liquid crystal research.
Describes the main aspects of chirality in liquid crystals, and points out some of the open questions of current research. The chapters review the highlights of the important topics and questions.
In recent years, there has been increasing activity in the research and design of optical systems based on liquid crystal (LC) science. Bringing together contributions from leading figures in industry and academia, Optical Applications of Liquid Crystals covers the range of existing applications as well as those in development. Unique in its thorou
Functional oxides are used both as insulators and metallic conductors in key applications across all industrial sectors. This makes them attractive candidates in modern technology ? they make solar cells cheaper, computers more efficient and medical instrumentation more sensitive. Based on recent research, experts in the field describe novel materials, their properties and applications for energy systems, semiconductors, electronics, catalysts and thin films. This monograph is divided into 6 parts which allows the reader to find their topic of interest quickly and efficiently. * Magnetic Oxides * Dopants, Defects and Ferromagnetism in Metal Oxides * Ferroelectrics * Multiferroics * Interfaces and Magnetism * Devices and Applications This book is a valuable asset to materials scientists, solid state chemists, solid state physicists, as well as engineers in the electric and automotive industries.
Describing all aspects of polymer-dispersed and polymer-stabilized liquid crystals, this book is a must-have resource for practitioners in the area.
Bent-Shaped Liquid Crystals: Structures and Physical Properties provides insight into the latest developments in the research on liquid crystals formed by bent-shaped mesogens. After a historical introduction, the expert authors discuss different kinds of mesophase structures formed by bent-shaped molecules. This book devotes the majority of its pages to physical properties such as polar switching, optics and non-linear optics, and behavior in restricted geometries. However, as chemistry is often highly relevant to the emergence of new phases, particularly with reflection symmetry breaking, it also involves a broad spectrum of interesting chemistry viewpoints.
The Nato Advanced Study Institute "Phase Transitions in Liquid Crystals" was held May 2-12, 1991, in Erice, Sicily. This was the 16th conference organized by the International School of Quantum Electronics, under the auspices of the "Ettore Majorana" Centre for Scientific Culture. The subject of "Liquid Crystals" has made amazing progress since the last ISQE Course on this subject in 1985. The present Proceedings give a tutorial introduction to today's most important areas, as well as a review of current results by leading researchers. We have brought together some of the world's acknowledged experts in the field to summarize both the present state of their research and its background. Most of the lecturers attended all the lectures and devoted their spare hours to stimulating discussions. We would like to thank them all for their admirable contributions. The Institute also took advantage of a very active audience; most of the students were active researchers in the field and contributed with discussions and seminars. Some of these student seminars are also included in these Proceedings. We did not modify the original manuscripts in editing this book, but we did group them according to the following topics: 1) "Theoretical Foundations"; 2) "Thermotropic Liquid Crystals"; 3) "Ferroelectric Liquid Crystals"; 4) "Polymeric Liquid Crystals"; and 5) "Lyotropic Liquid Crystals".
The book intends to give a state-of-the-art overview of flexoelectricity, a linear physical coupling between mechanical (orientational) deformations and electric polarization, which is specific to systems with orientational order, such as liquid crystals. Chapters written by experts in the field shed light on theoretical as well as experimental aspects of research carried out since the discovery of flexoelectricity. Besides a common macroscopic (continuum) description the microscopic theory of flexoelectricity is also addressed. Electro-optic effects due to or modified by flexoelectricity as well as various (direct and indirect) measurement methods are discussed. Special emphasis is given to the role of flexoelectricity in pattern-forming instabilities. While the main focus of the book lies in flexoelectricity in nematic liquid crystals, peculiarities of other mesophases (bent-core systems, cholesterics, and smectics) are also reviewed. Flexoelectricity has relevance to biological (living) systems and can also offer possibilities for technical applications. The basics of these two interdisciplinary fields are also summarized.