Download Free Fermi Lat Results And Perspectives In Measurements Of High Energy Galactic Cosmic Rays Book in PDF and EPUB Free Download. You can read online Fermi Lat Results And Perspectives In Measurements Of High Energy Galactic Cosmic Rays and write the review.

Real breakthrough during last 1-1.5 years in cosmic ray electrons: ATIC, HESS, Pamela, and finally Fermi-LAT. New quality data have made it possible to start quantitative modeling. With the new data more puzzles than before on CR electrons origin. Need "multi-messenger" campaign: electrons, positrons, gammas, X-ray, radio, neutrino... It is viable that we are dealing with at least two distinct mechanisms of "primary" electron (both signs) production: a softer spectrum of negative electrons, and a harder spectrum of both e(+)+e(-). Exotic (e.g. DM) origin is not ruled out. Upper limits on CR electrons anisotropy are set. Good perspectives to have the Fermi LAT results on proton spectrum and positron fraction.
Provides information and explores theories behind such phenomena as eclipses, black holes, gamma ray bursts, star births, and quasars
The Fermi-LAT experiment recently reported high precision measurements of the spectrum of cosmic-ray electrons-plus-positrons (CRE) between 20 GeV and 1 TeV. The spectrum shows no prominent spectral features, and is significantly harder than that inferred from several previous experiments. Here we discuss several interpretations of the Fermi results based either on a single large scale Galactic CRE component or by invoking additional electron-positron primary sources, e.g. nearby pulsars or particle Dark Matter annihilation. We show that while the reported Fermi-LAT data alone can be interpreted in terms of a single component scenario, when combined with other complementary experimental results, specifically the CRE spectrum measured by H.E.S.S. and especially the positron fraction reported by PAMELA between 1 and 100 GeV, that class of models fails to provide a consistent interpretation. Rather, we find that several combinations of parameters, involving both the pulsar and dark matter scenarios, allow a consistent description of those results. We also briefly discuss the possibility of discriminating between the pulsar and dark matter interpretations by looking for a possible anisotropy in the CRE flux.
The Fermi-LAT (Large Area Telescope) gamma-ray space observatory was launched in June 2008 and has been continuously operating since. By far the brightest gamma-ray source in the sky for Fermi is the Earth. This emission is produced by the interactions between cosmic-ray (CR) particles and the Earth's atmosphere. Various properties of this emission have been measured with unprecedented details. Its energy spectrum is used to infer the spectrum of CR proton. The correlations between the thickness of the atmosphere and the solar cycle are tested by observing the time variation of its profile shape. Also, Fermi has demonstrated an excellent capacity to detect electrons and positrons. This enables the measurements of separate CR electrons and positrons spectra between 20 - 200 GeV, using the geomagnetic field to differentiate the charge sign. The result shows that the positron fraction is increasing with energy in this energy range, which strongly contradicts our standard models of CR productions and propagations. The interpretation of the excess positrons is still at the frontier of current CR physics research. It may be a sign of new phenomena, such as dark matter annihilation signal, or normal astrophysical sources in the local universe that we have to better understand.
Key features: Complete introductory overview of cosmic ray physics Covers the origins, acceleration, transport mechanisms and detection of these particles Mathematical and technical detail is kept separate from the main text
In 1912 Victor Franz Hess made the revolutionary discovery that ionizing radiation is incident upon the Earth from outer space. He showed with ground-based and balloon-borne detectors that the intensity of the radiation did not change significantly between day and night. Consequently, the sun could not be regarded as the sources of this radiation and the question of its origin remained unanswered. Today, almost one hundred years later the question of the origin of the cosmic radiation still remains a mystery.Hess' discovery has given an enormous impetus to large areas of science, in particular to physics, and has played a major role in the formation of our current understanding of universal evolution. For example, the development of new fields of research such as elementary particle physics, modern astrophysics and cosmology are direct consequences of this discovery. Over the years the field of cosmic ray research has evolved in various directions: Firstly, the field of particle physics that was initiated by the discovery of many so-called elementary particles in the cosmic radiation. There is a strong trend from the accelerator physics community to reenter the field of cosmic ray physics, now under the name of astroparticle physics. Secondly, an important branch of cosmic ray physics that has rapidly evolved in conjunction with space exploration concerns the low energy portion of the cosmic ray spectrum. Thirdly, the branch of research that is concerned with the origin, acceleration and propagation of the cosmic radiation represents a great challenge for astrophysics, astronomy and cosmology. Presently very popular fields of research have rapidly evolved, such as high-energy gamma ray and neutrino astronomy. In addition, high-energy neutrino astronomy may soon initiate as a likely spin-off neutrino tomography of the Earth and thus open a unique new branch of geophysical research of the interior of the Earth. Finally, of considerable interest are the biological and medical aspects of the cosmic radiation because of it ionizing character and the inevitable irradiation to which we are exposed. This book is a reference manual for researchers and students of cosmic ray physics and associated fields and phenomena. It is not intended to be a tutorial. However, the book contains an adequate amount of background materials that its content should be useful to a broad community of scientists and professionals. The present book contains chiefly a data collection in compact form that covers the cosmic radiation in the vicinity of the Earth, in the Earth's atmosphere, at sea level and underground. Included are predominantly experimental but also theoretical data. In addition the book contains related data, definitions and important relations. The aim of this book is to offer the reader in a single volume a readily available comprehensive set of data that will save him the need of frequent time consuming literature searches.
The original work presented in this thesis constitutes an important contribution to modern Cosmic Ray (CR) physics, and comes during one of the most exciting periods of this field. The first part introduces a new numerical code (DRAGON) to model the CR propagation in our Galaxy. The code is then used to perform a combined analysis of CR data, making it possible to determine their propagation properties with unprecedented accuracy. The second part is dedicated to a theoretical interpretation of the recent crucial experimental results on cosmic electron and positron spectra (PAMELA, Fermi-LAT experiments). Using the tools developed in the first part of the thesis, the author convincingly argues for the existence of a new spectral component, which could arise either from local astrophysical sources, such as pulsars, or from Dark Matter annihilation or decay. This thesis is a highly advanced work; the methods, analysis and results are clearly and carefully presented. This work is set to become an important reference document for any future work in this area.
Abstract: Measurements indicate that ~85% of the matter in the universe neither emits nor reflects light--appropriately called "dark matter". We believe dark matter may be primary composed of new particles, but we know very little about their nature. What dark matter is and how it interacts is one of the top cosmological mysteries today. Detecting a signal from particle dark matter would not only offer insight into the fundamental nature of dark matter, but it would also be strong evidence for physics existing beyond the Standard Model. A promising dark matter candidate is a weakly interacting massive particle (WIMP). Measurements indicate that the Milky Way Galaxy resides in a halo of dark matter, making it an ideal laboratory for investigating these elusive particles. As WIMPs are predicted to be heavy, their interactions should produce high-energy gamma rays that would be detected by the Large Area Telescope (LAT) onboard the Fermi Gamma-ray Space Telescope (Fermi). If WIMPs annihilate directly into gamma rays, the gamma-ray energy would be the same as the rest mass energy of the WIMPs, which is currently unknown. This process would cause a "pile-up" of gamma rays at a specific energy, producing a sharp line (or bump) in the otherwise relatively smooth gamma-ray energy spectrum. This distinctive signal would not only be strong evidence for the existence of WIMPs, but would also provide information about their mass. We have searched for spectral lines in the energy range 5 to 300 GeV using 3.7 years of Fermi LAT data, reprocessed with updated calorimeter calibration constants, and an improved energy dispersion model from previous LAT Collaboration line searches. We search in five regions selected to optimize sensitivity to different theoretically-motivated density distributions of WIMPs. We do not find any globally significant lines in our a priori search regions and present 95% confidence limits for annihilation cross section and decay lifetimes. We extensively discuss potential systematic effects in the search. Finally, we consider claims of evidence for a spectral line at 130 GeV, compare our results to previous work, and discuss why this search finds a somewhat lower statistical significance for a potential line than other works.
Offers an accessible text and reference (a cosmic-ray manual) for graduate students entering the field and high-energy astrophysicists will find this an accessible cosmic-ray manual Easy to read for the general astronomer, the first part describes the standard model of cosmic rays based on our understanding of modern particle physics. Presents the acceleration scenario in some detail in supernovae explosions as well as in the passage of cosmic rays through the Galaxy. Compares experimental data in the atmosphere as well as underground are compared with theoretical models