Download Free Feedback Nash Equilibria For Linear Quadratic Descriptor Differential Games Book in PDF and EPUB Free Download. You can read online Feedback Nash Equilibria For Linear Quadratic Descriptor Differential Games and write the review.

The book focuses on Pareto optimality in cooperative games. Most of the existing works focus on the Pareto optimality of deterministic continuous-time systems or for the regular convex LQ case. To expand on the available literature, we explore the existence conditions of Pareto solutions in stochastic differential game for more general cases. In addition, the LQ Pareto game for stochastic singular systems, Pareto-based guaranteed cost control for uncertain mean-field stochastic systems, and the existence conditions of Pareto solutions in cooperative difference game are also studied in detail. Addressing Pareto optimality for more general cases and wider systems is one of the major features of the book, making it particularly suitable for readers who are interested in multi-objective optimal control. Accordingly, it offers a valuable asset for researchers, engineers, and graduate students in the fields of control theory and control engineering, economics, management science, mathematics, etc.
Game theory is the theory of social situations, and the majority of research into the topic focuses on how groups of people interact by developing formulas and algorithms to identify optimal strategies and to predict the outcome of interactions. Only fifty years old, it has already revolutionized economics and finance, and is spreading rapidly to a wide variety of fields. LQ Dynamic Optimization and Differential Games is an assessment of the state of the art in its field and the first modern book on linear-quadratic game theory, one of the most commonly used tools for modelling and analysing strategic decision making problems in economics and management. Linear quadratic dynamic models have a long tradition in economics, operations research and control engineering; and the author begins by describing the one-decision maker LQ dynamic optimization problem before introducing LQ differential games. Covers cooperative and non-cooperative scenarios, and treats the standard information structures (open-loop and feedback). Includes real-life economic examples to illustrate theoretical concepts and results. Presents problem formulations and sound mathematical problem analysis. Includes exercises and solutions, enabling use for self-study or as a course text. Supported by a website featuring solutions to exercises, further examples and computer code for numerical examples. LQ Dynamic Optimization and Differential Games offers a comprehensive introduction to the theory and practice of this extensively used class of economic models, and will appeal to applied mathematicians and econometricians as well as researchers and senior undergraduate/graduate students in economics, mathematics, engineering and management science.
This is the first comprehensive tutorial on game theory and its application to wireless communications. The book starts with a guide to the essential principles of game theory relevant to the communications engineer, giving tools that can be used to develop applications in wireless communications. It explains how game theory models can be applied to distributed resource allocation in a perfect world. Having clarified how the models can be applied in principle, the book then gives practical implementation methods for the real world, showing how the models in the perfect world need to be adapted to real life situations which are far from perfect. The first tutorial style book that gives all the relevant theory, at the right level of rigour, for the wireless communications engineer Bridges the gap between theory and practice by giving examples and case studies showing how game theory can solve real world resource allocation problems Contains algorithms and techniques to implement game theory in wireless terminals.
This book constitutes the proceedings of the 19th International Conference on Mathematical Optimization Theory and Operations Research, MOTOR 2020, held in Novosibirsk, Russia, in July 2020. The 31 full papers presented in this volume were carefully reviewed and selected from 102 submissions. The papers are grouped in these topical sections: discrete optimization; mathematical programming; game theory; scheduling problem; heuristics and metaheuristics; and operational research applications.
This book deals with the stabilisation and control of centralised policy-making and its economic implications.
Conceived by Count Jacopo Francesco Riccati more than a quarter of a millennium ago, the Riccati equation has been widely studied in the subsequent centuries. Since its introduction in control theory in the sixties, the matrix Riccati equation has known an impressive range of applications, such as optimal control, H? optimization and robust stabilization, stochastic realization, synthesis of linear passive networks, to name but a few. This book consists of 11 chapters surveying the main concepts and results related to the matrix Riccati equation, both in continuous and discrete time. Theory, applications and numerical algorithms are extensively presented in an expository way. As a foreword, the history and prehistory of the Riccati equation is concisely presented.
This work addresses inverse dynamic games, which generalize the inverse problem of optimal control, and where the aim is to identify cost functions based on observed optimal trajectories. The identified cost functions can describe individual behavior in cooperative systems, e.g. human behavior in human-machine haptic shared control scenarios.
This book describes the latest advances in the theory of mean field games, which are optimal control problems with a continuum of players, each of them interacting with the whole statistical distribution of a population. While it originated in economics, this theory now has applications in areas as diverse as mathematical finance, crowd phenomena, epidemiology, and cybersecurity. Because mean field games concern the interactions of infinitely many players in an optimal control framework, one expects them to appear as the limit for Nash equilibria of differential games with finitely many players as the number of players tends to infinity. This book rigorously establishes this convergence, which has been an open problem until now. The limit of the system associated with differential games with finitely many players is described by the so-called master equation, a nonlocal transport equation in the space of measures. After defining a suitable notion of differentiability in the space of measures, the authors provide a complete self-contained analysis of the master equation. Their analysis includes the case of common noise problems in which all the players are affected by a common Brownian motion. They then go on to explain how to use the master equation to prove the mean field limit. This groundbreaking book presents two important new results in mean field games that contribute to a unified theoretical framework for this exciting and fast-developing area of mathematics.
A comprehensive, self-contained survey of the theory and applications of differential games, one of the most commonly used tools for modelling and analysing economics and management problems which are characterised by both multiperiod and strategic decision making. Although no prior knowledge of game theory is required, a basic knowledge of linear algebra, ordinary differential equations, mathematical programming and probability theory is necessary. Part One presents the theory of differential games, starting with the basic concepts of game theory and going on to cover control theoretic models, Markovian equilibria with simultaneous play, differential games with hierarchical play, trigger strategy equilibria, differential games with special structures, and stochastic differential games. Part Two offers applications to capital accumulation games, industrial organization and oligopoly games, marketing, resources and environmental economics.