Download Free Feedback Control Systems Analysis And Synthesis Book in PDF and EPUB Free Download. You can read online Feedback Control Systems Analysis And Synthesis and write the review.

Fuzzy logic control (FLC) has proven to be a popular control methodology for many complex systems in industry, and is often used with great success as an alternative to conventional control techniques. However, because it is fundamentally model free, conventional FLC suffers from a lack of tools for systematic stability analysis and controller design. To address this problem, many model-based fuzzy control approaches have been developed, with the fuzzy dynamic model or the Takagi and Sugeno (T–S) fuzzy model-based approaches receiving the greatest attention. Analysis and Synthesis of Fuzzy Control Systems: A Model-Based Approach offers a unique reference devoted to the systematic analysis and synthesis of model-based fuzzy control systems. After giving a brief review of the varieties of FLC, including the T–S fuzzy model-based control, it fully explains the fundamental concepts of fuzzy sets, fuzzy logic, and fuzzy systems. This enables the book to be self-contained and provides a basis for later chapters, which cover: T–S fuzzy modeling and identification via nonlinear models or data Stability analysis of T–S fuzzy systems Stabilization controller synthesis as well as robust H∞ and observer and output feedback controller synthesis Robust controller synthesis of uncertain T–S fuzzy systems Time-delay T–S fuzzy systems Fuzzy model predictive control Robust fuzzy filtering Adaptive control of T–S fuzzy systems A reference for scientists and engineers in systems and control, the book also serves the needs of graduate students exploring fuzzy logic control. It readily demonstrates that conventional control technology and fuzzy logic control can be elegantly combined and further developed so that disadvantages of conventional FLC can be avoided and the horizon of conventional control technology greatly extended. Many chapters feature application simulation examples and practical numerical examples based on MATLAB®.
This text deals with matrix methods for handling, reducing, and analyzing data from a dynamic system, and covers techniques for the design of feedback controllers for those systems which can be perfectly modeled. Unlike other texts at this level, this book also provides techniques for the design of feedback controllers for those systems which cannot be perfectly modeled. In addition, presentation draws attention to the iterative nature of the control design process, and introduces model reduction and concepts of equivalent models, topics not generally covered at this level. Chapters cover mathematical preliminaries, models of dynamic systems, properties of state space realizations, controllability and observability, equivalent realizations and model reduction, stability, optimal control of time-variant systems, state estimation, and model error concepts and compensation. Extensive appendixes cover the requisite mathematics.
An excellent introduction to feedback control system design, this book offers a theoretical approach that captures the essential issues and can be applied to a wide range of practical problems. Its explorations of recent developments in the field emphasize the relationship of new procedures to classical control theory, with a focus on single input and output systems that keeps concepts accessible to students with limited backgrounds. The text is geared toward a single-semester senior course or a graduate-level class for students of electrical engineering. The opening chapters constitute a basic treatment of feedback design. Topics include a detailed formulation of the control design program, the fundamental issue of performance/stability robustness tradeoff, and the graphical design technique of loopshaping. Subsequent chapters extend the discussion of the loopshaping technique and connect it with notions of optimality. Concluding chapters examine controller design via optimization, offering a mathematical approach that is useful for multivariable systems.
This text covers the material that every engineer, and most scientists and prospective managers, needs to know about feedback control, including concepts like stability, tracking, and robustness. Each chapter presents the fundamentals along with comprehensive, worked-out examples, all within a real-world context.
This book introduces the so-called "stable factorization approach" to the synthesis of feedback controllers for linear control systems. The key to this approach is to view the multi-input, multi-output (MIMO) plant for which one wishes to design a controller as a matrix over the fraction field F associated with a commutative ring with identity, denoted by R, which also has no divisors of zero. In this setting, the set of single-input, single-output (SISO) stable control systems is precisely the ring R, while the set of stable MIMO control systems is the set of matrices whose elements all belong to R. The set of unstable, meaning not necessarily stable, control systems is then taken to be the field of fractions F associated with R in the SISO case, and the set of matrices with elements in F in the MIMO case. The central notion introduced in the book is that, in most situations of practical interest, every matrix P whose elements belong to F can be "factored" as a "ratio" of two matrices N,D whose elements belong to R, in such a way that N,D are coprime. In the familiar case where the ring R corresponds to the set of bounded-input, bounded-output (BIBO)-stable rational transfer functions, coprimeness is equivalent to two functions not having any common zeros in the closed right half-plane including infinity. However, the notion of coprimeness extends readily to discrete-time systems, distributed-parameter systems in both the continuous- as well as discrete-time domains, and to multi-dimensional systems. Thus the stable factorization approach enables one to capture all these situations within a common framework. The key result in the stable factorization approach is the parametrization of all controllers that stabilize a given plant. It is shown that the set of all stabilizing controllers can be parametrized by a single parameter R, whose elements all belong to R. Moreover, every transfer matrix in the closed-loop system is an affine function of the design parameter R. Thus problems of reliable stabilization, disturbance rejection, robust stabilization etc. can all be formulated in terms of choosing an appropriate R. This is a reprint of the book Control System Synthesis: A Factorization Approach originally published by M.I.T. Press in 1985.
Thoroughly classroom-tested and proven to be a valuable self-study companion, Linear Control System Analysis and Design: Fifth Edition uses in-depth explanations, diagrams, calculations, and tables, to provide an intensive overview of modern control theory and conventional control system design. The authors keep the mathematics to a minimum while stressing real-world engineering challenges. Completely updated and packed with student-friendly features, the Fifth Edition presents a wide range of examples using MATLAB® and TOTAL-PC, as well as an appendix listing MATLAB functions for optimizing control system analysis and design. Eighty percent of the problems presented in the previous edition have been revised to further reinforce concepts necessary for current electrical, aeronautical, astronautical, and mechanical applications.
This monograph provides an in-depth treatment of the class of linear-dynamical quantum systems. The monograph presents a detailed account of the mathematical modeling of these systems using linear algebra and quantum stochastic calculus as the main tools for a treatment that emphasizes a system-theoretic point of view and the control-theoretic formulations of quantum versions of familiar problems from the classical (non-quantum) setting, including estimation and filtering, realization theory, and feedback control. Both measurement-based feedback control (i.e., feedback control by a classical system involving a continuous-time measurement process) and coherent feedback control (i.e., feedback control by another quantum system without the intervention of any measurements in the feedback loop) are treated. Researchers and graduates studying systems and control theory, quantum probability and stochastics or stochastic control whether from backgrounds in mechanical or electrical engineering or applied mathematics will find this book to be a valuable treatment of the control of an important class of quantum systems. The material presented here will also interest physicists working in optics, quantum optics, quantum information theory and other quantum-physical disciplines.
The essential introduction to the principles and applications of feedback systems—now fully revised and expanded This textbook covers the mathematics needed to model, analyze, and design feedback systems. Now more user-friendly than ever, this revised and expanded edition of Feedback Systems is a one-volume resource for students and researchers in mathematics and engineering. It has applications across a range of disciplines that utilize feedback in physical, biological, information, and economic systems. Karl Åström and Richard Murray use techniques from physics, computer science, and operations research to introduce control-oriented modeling. They begin with state space tools for analysis and design, including stability of solutions, Lyapunov functions, reachability, state feedback observability, and estimators. The matrix exponential plays a central role in the analysis of linear control systems, allowing a concise development of many of the key concepts for this class of models. Åström and Murray then develop and explain tools in the frequency domain, including transfer functions, Nyquist analysis, PID control, frequency domain design, and robustness. Features a new chapter on design principles and tools, illustrating the types of problems that can be solved using feedback Includes a new chapter on fundamental limits and new material on the Routh-Hurwitz criterion and root locus plots Provides exercises at the end of every chapter Comes with an electronic solutions manual An ideal textbook for undergraduate and graduate students Indispensable for researchers seeking a self-contained resource on control theory