Download Free Feedback Control Of Singular Systems With Applications To Incompressible Flows Book in PDF and EPUB Free Download. You can read online Feedback Control Of Singular Systems With Applications To Incompressible Flows and write the review.

" ... the purpose of this book is to describe and analyse (and to some extent generalise) the principal results, scattered in the literature, concerning perturbation methods in optimal control for systems that are governed by deterministic or stochastic differential equations."--Preface.
This monograph is sums up the development of singular system theory and provides the control circle with a systematic theory of the system. It focuses on the analysis and synthesis of singular control systems. Its distinctive features include systematic discussion of controllabilities and observabilities, design of singular or normal observers and compensators with their structural stability, systems analysis via transfer matrix, and studies of discrete-time singular systems. Some acquaintance with linear algebra and linear systems is assumed. Prospective readers are graduate students, scientists, and other researchers in control theory and its applications. Much of the material in the book is new.
This book presents the twin topics of singular perturbation methods and time scale analysis to problems in systems and control. The heart of the book is the singularly perturbed optimal control systems, which are notorious for demanding excessive computational costs. The book addresses both continuous control systems (described by differential equations) and discrete control systems (characterised by difference equations).
Singular systems have been widely studied in the past two decades due to their extensive applications in modelling and control of electrical circuits, power systems, economics and other areas. Interest has grown recently in the stability analysis and control of singular systems with parameter uncertainties due to their frequent presence in dynamic systems, which is much more complicated than that of state-space systems because controllers must be designed so that the closed-loop system is not only robustly stable, but also regular and impulse-free (in the continuous case) or causal (in the discrete case), while the latter two issues do not arise in the state-space case. This monograph aims to present up-to-date research developments and references on robust control and filtering of uncertain singular systems in a unified matrix inequality setting. It provides a coherent approach to studying control and filtering problems as extensions of state-space systems without the commonly used slow-fast decomposition. It contains valuable reference material for researchers wishing to explore the area of singular systems, and its contents are also suitable for a one-semester graduate course.
The feedback control of nonlinear differential and algebraic equation systems (DAEs) is a relatively new subject. Developing steadily over the last few years, it has generated growing interest inspired by its engineering applications and by advances in the feedback control of nonlinear ordinary differential equations (ODEs). This book-the first of its kind-introduces the reader to the inherent characteristics of nonlinear DAE systems and the methods used to address their control, then discusses the significance of DAE systems to the modeling and control of chemical processes. Within a unified framework, Control of Nonlinear Differential Algebraic Equation Systems presents recent results on the stabilization, output tracking, and disturbance elimination for a large class of nonlinear DAE systems. Written at a basic mathematical level-assuming some familiarity with analysis and control of nonlinear ODEs-the authors focus on continuous-time systems of differential and algebraic equations in semi-explicit form. Beginning with background material about DAE systems and their differences from ODE systems, the book discusses generic classes of chemical processes, feedback control of regular and non-regular DAE systems, control of systems with disturbance inputs, the connection of the DAE systems considered with singularly perturbed systems, and finally offers examples that illustrate the application of control methods and the advantages of using high-index DAE models as the basis for controller design. Mathematicians and engineers will find that this book provides unique, timely results that also clearly documents the relevance of DAE systems to chemical processes.
Contains contributions originating from the 'Conference on Optimal Control of Coupled Systems of Partial Differential Equations', held at the 'Mathematisches Forschungsinstitut Oberwolfach' in March 2008. This work covers a range of topics such as controllability, optimality systems, model-reduction techniques, and fluid-structure interactions.