Download Free Feedback Based Orthogonal Digital Filters Book in PDF and EPUB Free Download. You can read online Feedback Based Orthogonal Digital Filters and write the review.

Feedback-Based Orthogonal Digital Filters: Theory, Applications, and Implementation develops the theory of a feedback-based orthogonal digital filter and examines several applications where the filter topology leads to a simple and efficient solution. The development of the filter structure is linked to concepts in observer theory. Several signal processing problems can be represented as estimation problems, where a parametric representation of the input is used, to try and replicate it locally. This estimation problem can be solved using an identity observer, and the filter topology falls in this framework. Hence the filter topology represents a universal building block that can find application in several problems, such as spectral estimation, time-recursive computation of transforms, etc. Further, because of the orthogonality constraints satisfied by the structure, it also represents a robust solution under finite precision conditions. The book also presents the observer-based viewpoint of several signal processing problems, and shows that problems that are typically treated independently in the literature are in fact linked and can be cast in a single unified framework. In addition to examining the theoretical issues, the book describes practical issues related to a hardware implementation of the building block, in both the digital and analog domain. On the digital side, issues relating to implementation using semi-custom chips (FPGA's), and ASIC design are examined. On the analog side, the design and testing of a fabricated chip, that functions as a multi-sinusoidal phase-locked-loop, are described. Feedback-Based Orthogonal Digital Filters serves as an excellent reference. May be used as a text for advanced courses on the subject.
Models of dynamical systems are of great importance in almost all fields of science and engineering and specifically in control, signal processing and information science. A model is always only an approximation of a real phenomenon so that having an approximation theory which allows for the analysis of model quality is a substantial concern. The use of rational orthogonal basis functions to represent dynamical systems and stochastic signals can provide such a theory and underpin advanced analysis and efficient modelling. It also has the potential to extend beyond these areas to deal with many problems in circuit theory, telecommunications, systems, control theory and signal processing. Modelling and Identification with Rational Orthogonal Basis Functions affords a self-contained description of the development of the field over the last 15 years, furnishing researchers and practising engineers working with dynamical systems and stochastic processes with a standard reference work.
Grid converters are the key player in renewable energy integration. The high penetration of renewable energy systems is calling for new more stringent grid requirements. As a consequence, the grid converters should be able to exhibit advanced functions like: dynamic control of active and reactive power, operation within a wide range of voltage and frequency, voltage ride-through capability, reactive current injection during faults, grid services support. This book explains the topologies, modulation and control of grid converters for both photovoltaic and wind power applications. In addition to power electronics, this book focuses on the specific applications in photovoltaic wind power systems where grid condition is an essential factor. With a review of the most recent grid requirements for photovoltaic and wind power systems, the book discusses these other relevant issues: modern grid inverter topologies for photovoltaic and wind turbines islanding detection methods for photovoltaic systems synchronization techniques based on second order generalized integrators (SOGI) advanced synchronization techniques with robust operation under grid unbalance condition grid filter design and active damping techniques power control under grid fault conditions, considering both positive and negative sequences Grid Converters for Photovoltaic and Wind Power Systems is intended as a coursebook for graduated students with a background in electrical engineering and also for professionals in the evolving renewable energy industry. For people from academia interested in adopting the course, a set of slides is available for download from the website. www.wiley.com/go/grid_converters
Nowadays, all of us enjoy the worldwide revival of measurement and data science caused by the revolution of sensory devices and the amazing data transmission, storage and processing capabilities available and embedded everywhere. Thanks to the unbelievable amount of recorded information and the theoretical results of measurement and data science, a great deal of newly developed products invade our surroundings and enable previously unconceivable smart services and support. This volume consists of a number of chapters covering the scientific results of researchers working in this field at the Department of Measurement and Information Systems of the Budapest University of Technology and Economics, Hungary. The book reports research results attained by carefully combining some of the classical theories of measurement and data processing. These new approaches and methods contribute to higher quality measurement design and measured data evaluation, and provide hints to find efficient implementations for instrumentation.
Digital filters, together with signal processing, are being employed in the new technologies and information systems, and are implemented in different areas and applications. Digital filters and signal processing are used with no costs and they can be adapted to different cases with great flexibility and reliability. This book presents advanced developments in digital filters and signal process methods covering different cases studies. They present the main essence of the subject, with the principal approaches to the most recent mathematical models that are being employed worldwide.
This is an original and comprehensive monograph on the increasingly important field of Multistatic Radar Systems. The material covered includes target detection, coordinate and trajectory parameter estimation, optimum and suboptimum detectors and external interferences. The practical problems faced by those working with radar systems are considered - most algorithms are presented in a form allowing direct use in engineering practice, and many of the results can be immediately applied to information systems containing different types of sensors, not only radars. This book is the revised international edition of Chernyak's renowned Russian textbook.