Download Free Feature Dimension Reduction For Content Based Image Identification Book in PDF and EPUB Free Download. You can read online Feature Dimension Reduction For Content Based Image Identification and write the review.

Image data has portrayed immense potential as a foundation of information for numerous applications. Recent trends in multimedia computing have witnessed a rapid growth in digital image collections, resulting in a need for increased image data management. Feature Dimension Reduction for Content-Based Image Identification is a pivotal reference source that explores the contemporary trends and techniques of content-based image recognition. Including research covering topics such as feature extraction, fusion techniques, and image segmentation, this book explores different theories to facilitate timely identification of image data and managing, archiving, maintaining, and extracting information. This book is ideally designed for engineers, IT specialists, researchers, academicians, and graduate-level students seeking interdisciplinary research on image processing and analysis.
Content-Based Image Classification: Efficient Machine Learning Using Robust Feature Extraction Techniques is a comprehensive guide to research with invaluable image data. Social Science Research Network has revealed that 65% of people are visual learners. Research data provided by Hyerle (2000) has clearly shown 90% of information in the human brain is visual. Thus, it is no wonder that visual information processing in the brain is 60,000 times faster than text-based information (3M Corporation, 2001). Recently, we have witnessed a significant surge in conversing with images due to the popularity of social networking platforms. The other reason for embracing usage of image data is the mass availability of high-resolution cellphone cameras. Wide usage of image data in diversified application areas including medical science, media, sports, remote sensing, and so on, has spurred the need for further research in optimizing archival, maintenance, and retrieval of appropriate image content to leverage data-driven decision-making. This book demonstrates several techniques of image processing to represent image data in a desired format for information identification. It discusses the application of machine learning and deep learning for identifying and categorizing appropriate image data helpful in designing automated decision support systems. The book offers comprehensive coverage of the most essential topics, including: Image feature extraction with novel handcrafted techniques (traditional feature extraction) Image feature extraction with automated techniques (representation learning with CNNs) Significance of fusion-based approaches in enhancing classification accuracy MATLAB® codes for implementing the techniques Use of the Open Access data mining tool WEKA for multiple tasks The book is intended for budding researchers, technocrats, engineering students, and machine learning/deep learning enthusiasts who are willing to start their computer vision journey with content-based image recognition. The readers will get a clear picture of the essentials for transforming the image data into valuable means for insight generation. Readers will learn coding techniques necessary to propose novel mechanisms and disruptive approaches. The WEKA guide provided is beneficial for those uncomfortable coding for machine learning algorithms. The WEKA tool assists the learner in implementing machine learning algorithms with the click of a button. Thus, this book will be a stepping-stone for your machine learning journey. Please visit the author's website for any further guidance at https://www.rikdas.com/
Phishing Detection Using Content-Based Image Classification is an invaluable resource for any deep learning and cybersecurity professional and scholar trying to solve various cybersecurity tasks using new age technologies like Deep Learning and Computer Vision. With various rule-based phishing detection techniques at play which can be bypassed by phishers, this book provides a step-by-step approach to solve this problem using Computer Vision and Deep Learning techniques with significant accuracy. The book offers comprehensive coverage of the most essential topics, including: Programmatically reading and manipulating image data Extracting relevant features from images Building statistical models using image features Using state-of-the-art Deep Learning models for feature extraction Build a robust phishing detection tool even with less data Dimensionality reduction techniques Class imbalance treatment Feature Fusion techniques Building performance metrics for multi-class classification task Another unique aspect of this book is it comes with a completely reproducible code base developed by the author and shared via python notebooks for quick launch and running capabilities. They can be leveraged for further enhancing the provided models using new advancement in the field of computer vision and more advanced algorithms.
Processing multimedia content has emerged as a key area for the application of machine learning techniques, where the objectives are to provide insight into the domain from which the data is drawn, and to organize that data and improve the performance of the processes manipulating it. Arising from the EU MUSCLE network, this multidisciplinary book provides a comprehensive coverage of the most important machine learning techniques used and their application in this domain.
This volume helps to fill the gap between data analytics, image processing, and soft computing practices. Soft computing methods are used to focus on data analytics and image processing to develop good intelligent systems. To this end, readers of this volume will find quality research that presents the current trends, advanced methods, and hybridized techniques relating to data analytics and intelligent systems. The book also features case studies related to medical diagnosis with the use of image processing and soft computing algorithms in particular models. Providing extensive coverage of biometric systems, soft computing, image processing, artificial intelligence, and data analytics, the chapter authors discuss the latest research issues, present solutions to research problems, and look at comparative analysis with earlier results. Topics include some of the most important challenges and discoveries in intelligent systems today, such as computer vision concepts and image identification, data analysis and computational paradigms, deep learning techniques, face and speaker recognition systems, and more.
This book presents best selected papers presented at the International Conference on Emerging Wireless Communication Technologies and Information Security (EWCIS 2020), held from 8th & 9th October 2020 at Amity University Jharkhand, Ranchi, India. The book includes papers in the research area of wireless communications and intelligent systems, signal and image processing in engineering applications, data communication and information security, IoT and cloud computing. The contribution ranges from scientists, engineers and technologists from academia as well as from industry.
This cutting-edge volume focuses on how artificial intelligence can be used to give computers the ability to imitate human sight. With contributions from researchers in diverse countries, including Thailand, Spain, Japan, Turkey, Australia, and India, the book explains the essential modules that are necessary for comprehending artificial intelligence experiences to provide machines with the power of vision. The volume also presents innovative research developments, applications, and current trends in the field. The chapters cover such topics as visual quality improvement, Parkinson’s disease diagnosis, hypertensive retinopathy detection through retinal fundus, big image data processing, N-grams for image classification, medical brain images, chatbot applications, credit score improvisation, vision-based vehicle lane detection, damaged vehicle parts recognition, partial image encryption of medical images, and image synthesis. The chapter authors show different approaches to computer vision, image processing, and frameworks for machine learning to build automated and stable applications. Deep learning is included for making immersive application-based systems, pattern recognition, and biometric systems. The book also considers efficiency and comparison at various levels of using algorithms for real-time applications, processes, and analysis.
Exploring many aspects of blockchain technologies and providing an overview of the latest cuttingedge developments along with their diversified business applications, this volume addresses the challenges, emerging issues, and problems in classical centralized architecture and covers how blockchain platforms provide almost magical solutions and novel services for improving business processes. Focusing on blockchain technology-based distributed transactions for industrial use, the chapters address applications in sectors such as healthcare, pharmaceutical drug supply, finance and banking, agriculture and farming, semantic web services, etc. The book explores blockchain applications associated with security issues, cryptocurrencies, cloud computing, Internet of Things, estimating intelligence (of crows, as an example) using artificial intelligence, and more. The chapters discuss deployment, feasibility studies, and the many diverse services offered by blockchain technology
Based on current literature and cutting-edge advances in the machine learning field, there are four algorithms whose usage in new application domains must be explored: neural networks, rule induction algorithms, tree-based algorithms, and density-based algorithms. A number of machine learning related algorithms have been derived from these four algorithms. Consequently, they represent excellent underlying methods for extracting hidden knowledge from unstructured data, as essential data mining tasks. Implementation of Machine Learning Algorithms Using Control-Flow and Dataflow Paradigms presents widely used data-mining algorithms and explains their advantages and disadvantages, their mathematical treatment, applications, energy efficient implementations, and more. It presents research of energy efficient accelerators for machine learning algorithms. Covering topics such as control-flow implementation, approximate computing, and decision tree algorithms, this book is an essential resource for computer scientists, engineers, students and educators of higher education, researchers, and academicians.
This three-volume set constitutes the refereed proceedings of the Second International Conference on Recent Trends in Image Processing and Pattern Recognition (RTIP2R) 2018, held in Solapur, India, in December 2018. The 173 revised full papers presented were carefully reviewed and selected from 374 submissions. The papers are organized in topical sections in the tree volumes. Part I: computer vision and pattern recognition; machine learning and applications; and image processing. Part II: healthcare and medical imaging; biometrics and applications. Part III: document image analysis; image analysis in agriculture; and data mining, information retrieval and applications.