Download Free Feasibility Investigation Of Segmentally Precast Bridge Piers For Accelerated Construction Book in PDF and EPUB Free Download. You can read online Feasibility Investigation Of Segmentally Precast Bridge Piers For Accelerated Construction and write the review.

An innovative structural system for pier columns was investigated through a series of laboratory experiments. The columns and connections examined were comprised of precast concrete segments to accelerate construction. In addition some of the columns employed unbonded post-tensioning to self-center the columns when subjected to lateral loads and structural fuses to control large lateral deflections, dissipate energy, and expedite repair in the event of a catastrophic loading event. Six cantilever columns with varying component materials and connection details were subjected to a regimen of vertical dead loads and cyclic, quasi-static lateral loads. One column was designed as a control column to represent the behavior of a conventional reinforced concrete column and provide a basis for comparison with the remaining five jointed columns designed with the proposed structural system. After sustaining significant damage, the self-centering, jointed columns were repaired by replacing the structural fuses and retested to failure to investigate the effectiveness of the repair. The experiments identified both effective and unsatisfactory details for the jointed system. Two of the jointed columns demonstrated equivalent lateral strength, greater lateral stiffness, and greater lateral deformation capacity than the control column. The self-centering capability of the jointed columns was clearly demonstrated as well, and the repair technique proved effective as demonstrated by nearly identical pre and post repair behavior. The authors believe the proposed system to be a feasible alternative to conventional pier systems and recommend further development of details.
An innovative structural system for pier columns was investigated through a series of laboratory experiments. The columns and connections examined were comprised of precast concrete segments to accelerate construction. In addition some of the columns employed unbonded post-tensioning to self-center the columns when subjected to lateral loads and structural fuses to control large lateral deflections, dissipate energy, and expedite repair in the event of a catastrophic loading event. Six cantilever columns with varying component materials and connection details were subjected to a regimen of vertical dead loads and cyclic, quasi-static lateral loads. One column was designed as a control column to represent the behavior of a conventional reinforced concrete column and provide a basis for comparison with the remaining five jointed columns designed with the proposed structural system. After sustaining significant damage, the self-centering, jointed columns were repaired by replacing the structural fuses and retested to failure to investigate the effectiveness of the repair. The experiments identified both effective and unsatisfactory details for the jointed system. Two of the jointed columns demonstrated equivalent lateral strength, greater lateral stiffness, and greater lateral deformation capacity than the control column. The self-centering capability of the jointed columns was clearly demonstrated as well, and the repair technique proved effective as demonstrated by nearly identical pre and post repair behavior. The authors believe the proposed system to be a feasible alternative to conventional pier systems and recommend further development of details.
This report from the second Strategic Highway Research Program (SHRP 2), which is administered by the Transportation Research Board of the National Academies, documents the development of standardized approaches to designing and constructing complete bridge systems for rapid renewals.
The purpose of this report is to document Accelerated Bridge Construction (ABC) techniques on IBRD (Innovative Bridge Research and Development) project 102470 for the construction of Bridge N-16-Q on State Highway 69 over Turkey Creek. The project demonstrated faster pier erection by utilizing precast pier caps to eliminate concrete cure time from the critical path in the construction schedule.
An effective, viable design solution for the elevated viaduct guideway for Universal Freight Shuttle (UFS) system championed by Texas Transportation Institute (TTI) is presented. The proposed precast elevated UFS bridge system is analyzed for the operational vehicular loading as provided by TTI and a number of design alternatives for the various bridge components are provided. These includes: the design of the fully precast deck panels for long continuous spans, design of the shear connectors resisting interface shear at bridge deck-girder interface, design of structurally efficient and cost-effective trough girders and its design alternative with I-girders, and economic and long-term serviceable design of bridge piers. A literature review and study of the existing precast bridges is presented for the state-of-the-art and practice, design specifications and publications by AASHTO, State Department of Transportation and other agencies. These existing systems are refined to determine the most appropriate specification for the proposed bridge components by integrating the planning, design, fabrication and construction techniques to ensure high precision freight shuttle movement, construction feasibility, safety, life-cycle cost, durability and serviceability requirements. The design concept presented is a deviation from the conventional railways and highways design. The best practices and specifications of AASHTO and AREMA are combined suitably in this research to suit the major requirements of the project. A combination of the design philosophy with appropriate construction techniques has been blended to devise a system which is efficient for offsite manufacture of components for construction of the bridge and adaptable to the different bridge configurations. Based on the design results, it is found that precast concrete deck panels in combination with precast, prestressed concrete trough girders provides the most efficient superstructure solution for this project. The Damage Avoidance Design for the precast bridge piers along with the precast superstructure provides a system with comparable structural performance along with other benefits such as long term serviceability, economical sections, practically transportable units, modular simplicity for relocation as desired and ability to offer space for commercial usage. The steps for construction of the bridge is schematically presented and sequentially explained. The electronic version of this dissertation is accessible from http://hdl.handle.net/1969.1/150928
The traveling public has no patience for prolonged, high cost construction projects. This puts highway construction contractors under intense pressure to minimize traffic disruptions and construction cost. Actively promoted by the Federal Highway Administration, there are hundreds of accelerated bridge construction (ABC) construction programs in the United States, Europe and Japan. Accelerated Bridge Construction: Best Practices and Techniques provides a wide range of construction techniques, processes and technologies designed to maximize bridge construction or reconstruction operations while minimizing project delays and community disruption. - Describes design methods for accelerated bridge substructure construction; reducing foundation construction time and methods by using pile bents - Explains applications to steel bridges, temporary bridges in place of detours using quick erection and demolition - Covers design-build systems' boon to ABC; development of software; use of fiber reinforced polymer (FRP) - Includes applications to glulam and sawn lumber bridges, precast concrete bridges, precast joints details; use of lightweight aggregate concrete, aluminum and high-performance steel
Life-Cycle Civil Engineering: Innovation, Theory and Practice contains the lectures and papers presented at IALCCE2020, the Seventh International Symposium on Life-Cycle Civil Engineering, held in Shanghai, China, October 27-30, 2020. It consists of a book of extended abstracts and a multimedia device containing the full papers of 230 contributions, including the Fazlur R. Khan lecture, eight keynote lectures, and 221 technical papers from all over the world. All major aspects of life-cycle engineering are addressed, with special emphasis on life-cycle design, assessment, maintenance and management of structures and infrastructure systems under various deterioration mechanisms due to various environmental hazards. It is expected that the proceedings of IALCCE2020 will serve as a valuable reference to anyone interested in life-cycle of civil infrastructure systems, including students, researchers, engineers and practitioners from all areas of engineering and industry.