Download Free Fault Tolerant Distributed Transactions On Blockchain Book in PDF and EPUB Free Download. You can read online Fault Tolerant Distributed Transactions On Blockchain and write the review.

Since the introduction of Bitcoin—the first widespread application driven by blockchain—the interest of the public and private sectors in blockchain has skyrocketed. In recent years, blockchain-based fabrics have been used to address challenges in diverse fields such as trade, food production, property rights, identity-management, aid delivery, health care, and fraud prevention. This widespread interest follows from fundamental concepts on which blockchains are built that together embed the notion of trust, upon which blockchains are built. 1. Blockchains provide data transparancy. Data in a blockchain is stored in the form of a ledger, which contains an ordered history of all the transactions. This facilitates oversight and auditing. 2. Blockchains ensure data integrity by using strong cryptographic primitives. This guarantees that transactions accepted by the blockchain are authenticated by its issuer, are immutable, and cannot be repudiated by the issuer. This ensures accountability. 3. Blockchains are decentralized, democratic, and resilient. They use consensus-based replication to decentralize the ledger among many independent participants. Thus, it can operate completely decentralized and does not require trust in a single authority. Additions to the chain are performed by consensus, in which all participants have a democratic voice in maintaining the integrity of the blockchain. Due to the usage of replication and consensus, blockchains are also highly resilient to malicious attacks even when a significant portion of the participants are malicious. It further increases the opportunity for fairness and equity through democratization. These fundamental concepts and the technologies behind them—a generic ledger-based data model, cryptographically ensured data integrity, and consensus-based replication—prove to be a powerful and inspiring combination, a catalyst to promote computational trust. In this book, we present an in-depth study of blockchain, unraveling its revolutionary promise to instill computational trust in society, all carefully tailored to a broad audience including students, researchers, and practitioners. We offer a comprehensive overview of theoretical limitations and practical usability of consensus protocols while examining the diverse landscape of how blockchains are manifested in their permissioned and permissionless forms.
AN ESSENTIAL GUIDE TO USING BLOCKCHAIN TO PROVIDE FLEXIBILITY, COST-SAVINGS, AND SECURITY TO DATA MANAGEMENT, DATA ANALYSIS, AND INFORMATION SHARING Blockchain for Distributed Systems Security contains a description of the properties that underpin the formal foundations of Blockchain technologies and explores the practical issues for deployment in cloud and Internet of Things (IoT) platforms. The authors—noted experts in the field—present security and privacy issues that must be addressed for Blockchain technologies to be adopted for civilian and military domains. The book covers a range of topics including data provenance in cloud storage, secure IoT models, auditing architecture, and empirical validation of permissioned Blockchain platforms. The book's security and privacy analysis helps with an understanding of the basics of Blockchain and it explores the quantifying impact of the new attack surfaces introduced by Blockchain technologies and platforms. In addition, the book contains relevant and current updates on the topic. This important resource: Provides an overview of Blockchain-based secure data management and storage for cloud and IoT Covers cutting-edge research findings on topics including invariant-based supply chain protection, information sharing framework, and trust worthy information federation Addresses security and privacy concerns in Blockchain in key areas, such as preventing digital currency miners from launching attacks against mining pools, empirical analysis of the attack surface of Blockchain, and more Written for researchers and experts in computer science and engineering, Blockchain for Distributed Systems Security contains the most recent information and academic research to provide an understanding of the application of Blockchain technology.
The last decade has brought groundbreaking developments in transaction processing. This resurgence of an otherwise mature research area has spurred from the diminishing cost per GB of DRAM that allows many transaction processing workloads to be entirely memory-resident. This shift demanded a pause to fundamentally rethink the architecture of database systems. The data storage lexicon has now expanded beyond spinning disks and RAID levels to include the cache hierarchy, memory consistency models, cache coherence and write invalidation costs, NUMA regions, and coherence domains. New memory technologies promise fast non-volatile storage and expose unchartered trade-offs for transactional durability, such as exploiting byte-addressable hot and cold storage through persistent programming that promotes simpler recovery protocols. In the meantime, the plateauing single-threaded processor performance has brought massive concurrency within a single node, first in the form of multi-core, and now with many-core and heterogeneous processors. The exciting possibility to reshape the storage, transaction, logging, and recovery layers of next-generation systems on emerging hardware have prompted the database research community to vigorously debate the trade-offs between specialized kernels that narrowly focus on transaction processing performance vs. designs that permit transactionally consistent data accesses from decision support and analytical workloads. In this book, we aim to classify and distill the new body of work on transaction processing that has surfaced in the last decade to navigate researchers and practitioners through this intricate research subject.
Blockchain is an emerging technology platform for developing decentralized applications and data storage, over and beyond its role as the technology underlying the cryptocurrencies. The basic tenet of this platform is that it allows one to create a distributed and replicated ledger of events, transactions, and data generated through various IT processes with strong cryptographic guarantees of tamper resistance, immutability, and verifiability. Public blockchain platforms allow us to guarantee these properties with overwhelming probabilities even when untrusted users are participants of distributed applications with the ability to transact on the platform. Even though, blockchain technology has become popularly known because of its use in the implementation of cryptocurrencies such as BitCoin, Ethereum, etc.; the technology itself holds much more promise in various areas such as time stamping, logging of critical events in a system, recording of transactions, trustworthy e-governance, etc. It introduces theoretical and practical aspects of blockchain technology. The book includes an in-depth insight into the need for decentralization, smart contracts, consensus both permissioned and permissionless, and various blockchain development frameworks, tools, and platforms. It can be used as a learning resource for various examinations and certifications related to cryptocurrency and blockchain technology. This book explained the nuts and bolts of blockchain technology in lucid language to make students more familiar with the implementation perspective of this much-needed technology.
Handbook of Research on Blockchain Technology presents the latest information on the adaptation and implementation of Blockchain technologies in real world business, scientific, healthcare and biomedical applications. The book's editors present the rapid advancements in existing business models by applying Blockchain techniques. Novel architectural solutions in the deployment of Blockchain comprise the core aspects of this book. Several use cases with IoT, biomedical engineering, and smart cities are also incorporated. As Blockchain is a relatively new technology that exploits decentralized networks and is used in many sectors for reliable, cost-effective and rapid business transactions, this book is a welcomed addition on existing knowledge. Financial services, retail, insurance, logistics, supply chain, public sectors and biomedical industries are now investing in Blockchain research and technologies for their business growth. Blockchain prevents double spending in financial transactions without the need of a trusted authority or central server. It is a decentralized ledger platform that facilitates verifiable transactions between parties in a secure and smart way. - Presents the evolution of blockchain, from fundamental theories, to present forms - Explains the concepts of blockchain related to cloud/edge computing, smart healthcare, smart cities and Internet of Things (IoT) - Provides complete coverage of the various tools, platforms and techniques used in blockchain - Explores smart contract tools and consensus algorithms - Covers a variety of applications with real world case studies in areas such as biomedical engineering, supply chain management, and tracking of goods and delivery
Exploring many aspects of blockchain technologies and providing an overview of the latest cuttingedge developments along with their diversified business applications, this volume addresses the challenges, emerging issues, and problems in classical centralized architecture and covers how blockchain platforms provide almost magical solutions and novel services for improving business processes. Focusing on blockchain technology-based distributed transactions for industrial use, the chapters address applications in sectors such as healthcare, pharmaceutical drug supply, finance and banking, agriculture and farming, semantic web services, etc. The book explores blockchain applications associated with security issues, cryptocurrencies, cloud computing, Internet of Things, estimating intelligence (of crows, as an example) using artificial intelligence, and more. The chapters discuss deployment, feasibility studies, and the many diverse services offered by blockchain technology
This book constitutes the refereed proceedings of the 12th International Symposium on Foundations of Information and Knowledge Systems, FoIKS 2022, held in Helsinki, Finland, in June 2022. The 13 full papers presented were carefully reviewed and selected from 21 submissions. The papers address various topics such as information and knowledge systems, including submissions that apply ideas, theories or methods from specific disciplines to information and knowledge systems. Examples of such disciplines are discrete mathematics, logic and algebra, model theory, databases, information theory, complexity theory, algorithmics and computation, statistics and optimization.
FinTech developers and managers understand that the blockchain has the potential to disrupt the financial world. Distributed ledger technology allows the participants of a distributed system to agree on a common view of the system, to track changes in the system, in a reliable way. In the distributed systems community, agreement techniques have been known long before cryptocurrencies such as Bitcoin (where the term blockchain is borrowed) emerged. Various concepts and protocols exist, each with its own advantages and disadvantages. This book introduces the basic techniques when building fault-tolerant distributed systems, in a scientific way. We will present different protocols and algorithms that allow for fault-tolerant operation, and we will discuss practical systems that implement these techniques.
​This book provides the reader with the most up-to-date knowledge of blockchain in mainstream areas of security, trust, and privacy in the decentralized domain, which is timely and essential (this is due to the fact that the distributed and P2P applications is increasing day-by-day, and the attackers adopt new mechanisms to threaten the security and privacy of the users in those environments). This book also provides the technical information regarding blockchain-oriented software, applications, and tools required for the researcher and developer experts in both computing and software engineering to provide solutions and automated systems against current security, trust and privacy issues in the cyberspace. Cybersecurity, trust and privacy (CTP) are pressing needs for governments, businesses, and individuals, receiving the utmost priority for enforcement and improvement in almost any societies around the globe. Rapid advances, on the other hand, are being made in emerging blockchain technology with broadly diverse applications that promise to better meet business and individual needs. Blockchain as a promising infrastructural technology seems to have the potential to be leveraged in different aspects of cybersecurity promoting decentralized cyberinfrastructure. Blockchain characteristics such as decentralization, verifiability and immutability may revolve current cybersecurity mechanisms for ensuring the authenticity, reliability, and integrity of data. Almost any article on the blockchain points out that the cybersecurity (and its derivatives) could be revitalized if it is supported by blockchain technology. Yet, little is known about factors related to decisions to adopt this technology, and how it can systemically be put into use to remedy current CTP’s issues in the digital world. Topics of interest for this book include but not limited to: Blockchain-based authentication, authorization and accounting mechanisms Applications of blockchain technologies in digital forensic and threat hunting Blockchain-based threat intelligence and threat analytics techniques Formal specification of smart contracts Automated tools for outsmarting smart contracts Security and privacy aspects of blockchain technologies Vulnerabilities of smart contracts Blockchain for securing cyber infrastructure and internet of things networks Blockchain-based cybersecurity education systems This book provides information for security and privacy experts in all the areas of blockchain, cryptocurrency, cybersecurity, forensics, smart contracts, computer systems, computer networks, software engineering, applied artificial intelligence for computer security experts, big data analysts, and decentralized systems. Researchers, scientists and advanced level students working in computer systems, computer networks, artificial intelligence, big data will find this book useful as well.
Since the introduction of Bitcoin-the first widespread application driven by blockchain-the interest of the public and private sectors in blockchain has skyrocketed. In recent years, blockchain-based fabrics have been used to address challenges in diverse fields such as trade, food production, property rights, identity-management, aid delivery, health care, and fraud prevention. This widespread interest follows from fundamental concepts on which blockchains are built that together embed the notion of trust, upon which blockchains are built. 1. Blockchains provide data transparancy. Data in a blockchain is stored in the form of a ledger, which contains an ordered history of all the transactions. This facilitates oversight and auditing. 2. Blockchains ensure data integrity by using strong cryptographic primitives. This guarantees that transactions accepted by the blockchain are authenticated by its issuer, are immutable, and cannot be repudiated by the issuer. This ensures accountability. 3. Blockchains are decentralized, democratic, and resilient. They use consensus-based replication to decentralize the ledger among many independent participants. Thus, it can operate completely decentralized and does not require trust in a single authority. Additions to the chain are performed by consensus, in which all participants have a democratic voice in maintaining the integrity of the blockchain. Due to the usage of replication and consensus, blockchains are also highly resilient to malicious attacks even when a significant portion of the participants are malicious. It further increases the opportunity for fairness and equity through democratization. These fundamental concepts and the technologies behind them-a generic ledger-based data model, cryptographically ensured data integrity, and consensus-based replication-prove to be a powerful and inspiring combination, a catalyst to promote computational trust. In this book, we present an in-depth study of blockchain, unraveling its revolutionary promise to instill computational trust in society, all carefully tailored to a broad audience including students, researchers, and practitioners. We offer a comprehensive overview of theoretical limitations and practical usability of consensus protocols while examining the diverse landscape of how blockchains are manifested in their permissioned and permissionless forms.