Download Free Fault Tolerant Distributed Algorithms Book in PDF and EPUB Free Download. You can read online Fault Tolerant Distributed Algorithms and write the review.

This book presents the most important fault-tolerant distributed programming abstractions and their associated distributed algorithms, in particular in terms of reliable communication and agreement, which lie at the heart of nearly all distributed applications. These programming abstractions, distributed objects or services, allow software designers and programmers to cope with asynchrony and the most important types of failures such as process crashes, message losses, and malicious behaviors of computing entities, widely known under the term "Byzantine fault-tolerance". The author introduces these notions in an incremental manner, starting from a clear specification, followed by algorithms which are first described intuitively and then proved correct. The book also presents impossibility results in classic distributed computing models, along with strategies, mainly failure detectors and randomization, that allow us to enrich these models. In this sense, the book constitutes an introduction to the science of distributed computing, with applications in all domains of distributed systems, such as cloud computing and blockchains. Each chapter comes with exercises and bibliographic notes to help the reader approach, understand, and master the fascinating field of fault-tolerant distributed computing.
Understanding distributed computing is not an easy task. This is due to the many facets of uncertainty one has to cope with and master in order to produce correct distributed software. Considering the uncertainty created by asynchrony and process crash failures in the context of message-passing systems, the book focuses on the main abstractions that one has to understand and master in order to be able to produce software with guaranteed properties. These fundamental abstractions are communication abstractions that allow the processes to communicate consistently (namely the register abstraction and the reliable broadcast abstraction), and the consensus agreement abstractions that allows them to cooperate despite failures. As they give a precise meaning to the words "communicate" and "agree" despite asynchrony and failures, these abstractions allow distributed programs to be designed with properties that can be stated and proved. Impossibility results are associated with these abstractions. Hence, in order to circumvent these impossibilities, the book relies on the failure detector approach, and, consequently, that approach to fault-tolerance is central to the book. Table of Contents: List of Figures / The Atomic Register Abstraction / Implementing an Atomic Register in a Crash-Prone Asynchronous System / The Uniform Reliable Broadcast Abstraction / Uniform Reliable Broadcast Abstraction Despite Unreliable Channels / The Consensus Abstraction / Consensus Algorithms for Asynchronous Systems Enriched with Various Failure Detectors / Constructing Failure Detectors
Understanding distributed computing is not an easy task. This is due to the many facets of uncertainty one has to cope with and master in order to produce correct distributed software. A previous book Communication and Agreement Abstraction for Fault-tolerant Asynchronous Distributed Systems (published by Morgan & Claypool, 2010) was devoted to the problems created by crash failures in asynchronous message-passing systems. The present book focuses on the way to cope with the uncertainty created by process failures (crash, omission failures and Byzantine behavior) in synchronous message-passing systems (i.e., systems whose progress is governed by the passage of time). To that end, the book considers fundamental problems that distributed synchronous processes have to solve. These fundamental problems concern agreement among processes (if processes are unable to agree in one way or another in presence of failures, no non-trivial problem can be solved). They are consensus, interactive consistency, k-set agreement and non-blocking atomic commit. Being able to solve these basic problems efficiently with provable guarantees allows applications designers to give a precise meaning to the words "cooperate" and "agree" despite failures, and write distributed synchronous programs with properties that can be stated and proved. Hence, the aim of the book is to present a comprehensive view of agreement problems, algorithms that solve them and associated computability bounds in synchronous message-passing distributed systems. Table of Contents: List of Figures / Synchronous Model, Failure Models, and Agreement Problems / Consensus and Interactive Consistency in the Crash Failure Model / Expedite Decision in the Crash Failure Model / Simultaneous Consensus Despite Crash Failures / From Consensus to k-Set Agreement / Non-Blocking Atomic Commit in Presence of Crash Failures / k-Set Agreement Despite Omission Failures / Consensus Despite Byzantine Failures / Byzantine Consensus in Enriched Models
This book constitutes the refereed proceedings of the 14th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2008, held in Budapest, Hungary, in March/April 2008 as part of ETAPS 2008, the European Joint Conferences on Theory and Practice of Software. The 31 revised full research papers and 7 revised tool demonstration papers presented together with the abstract of an invited paper were carefully reviewed and selected from a total of 140 submissions. The papers are organized in topical sections on parameterized systems, model checking, applications, static analysis, concurrent/distributed systems, symbolic execution, abstraction, interpolation, trust, and reputation.
When architecting dependable systems, fault tolerance is required to improve the overall system robustness. Many studies have been proposed, but the solutions are usually commissioned late during the design and implementation phases of the software life-cycle (e.g., Java and Windows NT exception handling), thus reducing the error recovery effectiveness. Since the system design typically models only normal behaviors of the system while ignoring exceptional ones, the generated system implementation is unable to handle abnormal events. Consequently, the system may fail in unexpected ways due to some faults. Researchers have advocated that fault tolerance management during the entire life-cycle improves the overall system robustness and that different classes of exceptions must be identified for each identified phase of software development, depending on the abstraction level of the software system being modeled. This book builds on this trend and investigates how fault tolerance mechanisms can be used when engineering a software system. New problems will arise, new models are needed at different abstraction levels, methodologies for mode driven engineering of such systems must be defined, new technologies are required, and new validation and verification environments are necessary.
Understanding distributed computing is not an easy task. This is due to the many facets of uncertainty one has to cope with and master in order to produce correct distributed software. Considering the uncertainty created by asynchrony and process crash failures in the context of message-passing systems, the book focuses on the main abstractions that one has to understand and master in order to be able to produce software with guaranteed properties. These fundamental abstractions are communication abstractions that allow the processes to communicate consistently (namely the register abstraction and the reliable broadcast abstraction), and the consensus agreement abstractions that allows them to cooperate despite failures. As they give a precise meaning to the words "communicate" and "agree" despite asynchrony and failures, these abstractions allow distributed programs to be designed with properties that can be stated and proved. Impossibility results are associated with these abstractions. Hence, in order to circumvent these impossibilities, the book relies on the failure detector approach, and, consequently, that approach to fault-tolerance is central to the book. Table of Contents: List of Figures / The Atomic Register Abstraction / Implementing an Atomic Register in a Crash-Prone Asynchronous System / The Uniform Reliable Broadcast Abstraction / Uniform Reliable Broadcast Abstraction Despite Unreliable Channels / The Consensus Abstraction / Consensus Algorithms for Asynchronous Systems Enriched with Various Failure Detectors / Constructing Failure Detectors
The goal of the Asilomar Workshop on Fault-Tolerant Distributed Computing, held March 17-19, 1986, was to facilitate interaction between theoreticians and practitioners by inviting speakers and choosing topics so as to present a broad overview of the field. This volume contains 22 papers stemming from the workshop, most of them revised and rewritten, presenting research results in distributed systems and fault-tolerant architectures and systems. The volume should be of use to students, researchers and developers.
Fault tolerance is an approach by which reliability of a computer system can be increased beyond what can be achieved by traditional methods. Comprehensive and self-contained, this book explores the information available on software supported fault tolerance techniques, with a focus on fault tolerance in distributed systems.
The goal of the Asilomar Workshop on Fault-Tolerant Distributed Computing, held March 17-19, 1986, was to facilitate interaction between theoreticians and practitioners by inviting speakers and choosing topics so as to present a broad overview of the field. This volume contains 22 papers stemming from the workshop, most of them revised and rewritten, presenting research results in distributed systems and fault-tolerant architectures and systems. The volume should be of use to students, researchers and developers.