Download Free Fault Simulation And Test Generation For Small Delay Faults Book in PDF and EPUB Free Download. You can read online Fault Simulation And Test Generation For Small Delay Faults and write the review.

Advances in design methods and process technologies have resulted in a continuous increase in the complexity of integrated circuits (ICs). However, the increased complexity and nanometer-size features of modern ICs make them susceptible to manufacturing defects, as well as performance and quality issues. Testing for Small-Delay Defects in Nanoscale CMOS Integrated Circuits covers common problems in areas such as process variations, power supply noise, crosstalk, resistive opens/bridges, and design-for-manufacturing (DfM)-related rule violations. The book also addresses testing for small-delay defects (SDDs), which can cause immediate timing failures on both critical and non-critical paths in the circuit. Overviews semiconductor industry test challenges and the need for SDD testing, including basic concepts and introductory material Describes algorithmic solutions incorporated in commercial tools from Mentor Graphics Reviews SDD testing based on "alternative methods" that explores new metrics, top-off ATPG, and circuit topology-based solutions Highlights the advantages and disadvantages of a diverse set of metrics, and identifies scope for improvement Written from the triple viewpoint of university researchers, EDA tool developers, and chip designers and tool users, this book is the first of its kind to address all aspects of SDD testing from such a diverse perspective. The book is designed as a one-stop reference for current industrial practices, research challenges in the domain of SDD testing, and recent developments in SDD solutions.
This book will introduce new techniques for detecting and diagnosing small-delay defects in integrated circuits. Although this sort of timing defect is commonly found in integrated circuits manufactured with nanometer technology, this will be the first book to introduce effective and scalable methodologies for screening and diagnosing small-delay defects, including important parameters such as process variations, crosstalk, and power supply noise.
This book describes a variety of test generation algorithms for testing crosstalk delay faults in VLSI circuits. It introduces readers to the various crosstalk effects and describes both deterministic and simulation-based methods for testing crosstalk delay faults. The book begins with a focus on currently available crosstalk delay models, test generation algorithms for delay faults and crosstalk delay faults, before moving on to deterministic algorithms and simulation-based algorithms used to test crosstalk delay faults. Given its depth of coverage, the book will be of interest to design engineers and researchers in the field of VLSI Testing.
Device testing represents the single largest manufacturing expense in the semiconductor industry, costing over $40 billion a year. The most comprehensive and wide ranging book of its kind, Testing of Digital Systems covers everything you need to know about this vitally important subject. Starting right from the basics, the authors take the reader through automatic test pattern generation, design for testability and built-in self-test of digital circuits before moving on to more advanced topics such as IDDQ testing, functional testing, delay fault testing, memory testing, and fault diagnosis. The book includes detailed treatment of the latest techniques including test generation for various fault models, discussion of testing techniques at different levels of integrated circuit hierarchy and a chapter on system-on-a-chip test synthesis. Written for students and engineers, it is both an excellent senior/graduate level textbook and a valuable reference.
This book contains extended and revised versions of the best papers presented at the 27th IFIP WG 10.5/IEEE International Conference on Very Large Scale Integration, VLSI-SoC 2019, held in Cusco, Peru, in October 2019. The 15 full papers included in this volume were carefully reviewed and selected from the 28 papers (out of 82 submissions) presented at the conference. The papers discuss the latest academic and industrial results and developments as well as future trends in the field of System-on-Chip (SoC) design, considering the challenges of nano-scale, state-of-the-art and emerging manufacturing technologies. In particular they address cutting-edge research fields like heterogeneous, neuromorphic and brain-inspired, biologically-inspired, approximate computing systems.
In Test Pattern Generation using Boolean Proof Engines, we give an introduction to ATPG. The basic concept and classical ATPG algorithms are reviewed. Then, the formulation as a SAT problem is considered. As the underlying engine, modern SAT solvers and their use on circuit related problems are comprehensively discussed. Advanced techniques for SAT-based ATPG are introduced and evaluated in the context of an industrial environment. The chapters of the book cover efficient instance generation, encoding of multiple-valued logic, usage of various fault models, and detailed experiments on multi-million gate designs. The book describes the state of the art in the field, highlights research aspects, and shows directions for future work.
The first of two volumes in the Electronic Design Automation for Integrated Circuits Handbook, Second Edition, Electronic Design Automation for IC System Design, Verification, and Testing thoroughly examines system-level design, microarchitectural design, logic verification, and testing. Chapters contributed by leading experts authoritatively discuss processor modeling and design tools, using performance metrics to select microprocessor cores for integrated circuit (IC) designs, design and verification languages, digital simulation, hardware acceleration and emulation, and much more. New to This Edition: Major updates appearing in the initial phases of the design flow, where the level of abstraction keeps rising to support more functionality with lower non-recurring engineering (NRE) costs Significant revisions reflected in the final phases of the design flow, where the complexity due to smaller and smaller geometries is compounded by the slow progress of shorter wavelength lithography New coverage of cutting-edge applications and approaches realized in the decade since publication of the previous edition—these are illustrated by new chapters on high-level synthesis, system-on-chip (SoC) block-based design, and back-annotating system-level models Offering improved depth and modernity, Electronic Design Automation for IC System Design, Verification, and Testing provides a valuable, state-of-the-art reference for electronic design automation (EDA) students, researchers, and professionals.
This book discusses the new roles that the VLSI (very-large-scale integration of semiconductor circuits) is taking for the safe, secure, and dependable design and operation of electronic systems. The book consists of three parts. Part I, as a general introduction to this vital topic, describes how electronic systems are designed and tested with particular emphasis on dependability engineering, where the simultaneous assessment of the detrimental outcome of failures and cost of their containment is made. This section also describes the related research project “Dependable VLSI Systems,” in which the editor and authors of the book were involved for 8 years. Part II addresses various threats to the dependability of VLSIs as key systems components, including time-dependent degradations, variations in device characteristics, ionizing radiation, electromagnetic interference, design errors, and tampering, with discussion of technologies to counter those threats. Part III elaborates on the design and test technologies for dependability in such applications as control of robots and vehicles, data processing, and storage in a cloud environment and heterogeneous wireless telecommunications. This book is intended to be used as a reference for engineers who work on the design and testing of VLSI systems with particular attention to dependability. It can be used as a textbook in graduate courses as well. Readers interested in dependable systems from social and industrial–economic perspectives will also benefit from the discussions in this book.
Model based testing is the most powerful technique for testing hardware and software systems. Models in Hardware Testing describes the use of models at all the levels of hardware testing. The relevant fault models for nanoscaled CMOS technology are introduced, and their implications on fault simulation, automatic test pattern generation, fault diagnosis, memory testing and power aware testing are discussed. Models and the corresponding algorithms are considered with respect to the most recent state of the art, and they are put into a historical context by a concluding chapter on the use of physical fault models in fault tolerance.
Modern electronics testing has a legacy of more than 40 years. The introduction of new technologies, especially nanometer technologies with 90nm or smaller geometry, has allowed the semiconductor industry to keep pace with the increased performance-capacity demands from consumers. As a result, semiconductor test costs have been growing steadily and typically amount to 40% of today's overall product cost. This book is a comprehensive guide to new VLSI Testing and Design-for-Testability techniques that will allow students, researchers, DFT practitioners, and VLSI designers to master quickly System-on-Chip Test architectures, for test debug and diagnosis of digital, memory, and analog/mixed-signal designs. - Emphasizes VLSI Test principles and Design for Testability architectures, with numerous illustrations/examples. - Most up-to-date coverage available, including Fault Tolerance, Low-Power Testing, Defect and Error Tolerance, Network-on-Chip (NOC) Testing, Software-Based Self-Testing, FPGA Testing, MEMS Testing, and System-In-Package (SIP) Testing, which are not yet available in any testing book. - Covers the entire spectrum of VLSI testing and DFT architectures, from digital and analog, to memory circuits, and fault diagnosis and self-repair from digital to memory circuits. - Discusses future nanotechnology test trends and challenges facing the nanometer design era; promising nanotechnology test techniques, including Quantum-Dots, Cellular Automata, Carbon-Nanotubes, and Hybrid Semiconductor/Nanowire/Molecular Computing. - Practical problems at the end of each chapter for students.