Download Free Fault Detection And Isolation In A Networked Multi Vehicle Unmanned System Book in PDF and EPUB Free Download. You can read online Fault Detection And Isolation In A Networked Multi Vehicle Unmanned System and write the review.

“Fault Detection and Isolation: Multi-Vehicle Unmanned System” deals with the design and development of fault detection and isolation algorithms for unmanned vehicles such as spacecraft, aerial drones and other related vehicles. Addressing fault detection and isolation is a key step towards designing autonomous, fault-tolerant cooperative control of networks of unmanned systems. This book proposes a solution based on a geometric approach, and presents new theoretical findings for fault detection and isolation in Markovian jump systems. Also discussed are the effects of large environmental disturbances, as well as communication channels, on unmanned systems. The book proposes novel solutions to difficulties like robustness issues, as well as communication channel anomalies. “Fault Detection and Isolation: Multi-Vehicle Unmanned System” is an ideal book for researchers and engineers working in the fields of fault detection, as well as networks of unmanned vehicles.
This book deals with optimization methods as tools for decision making and control in the presence of model uncertainty. It is oriented to the use of these tools in engineering, specifically in automatic control design with all its components: analysis of dynamical systems, identification problems, and feedback control design. Developments in Model-Based Optimization and Control takes advantage of optimization-based formulations for such classical feedback design objectives as stability, performance and feasibility, afforded by the established body of results and methodologies constituting optimal control theory. It makes particular use of the popular formulation known as predictive control or receding-horizon optimization. The individual contributions in this volume are wide-ranging in subject matter but coordinated within a five-part structure covering material on: · complexity and structure in model predictive control (MPC); · collaborative MPC; · distributed MPC; · optimization-based analysis and design; and · applications to bioprocesses, multivehicle systems or energy management. The various contributions cover a subject spectrum including inverse optimality and more modern decentralized and cooperative formulations of receding-horizon optimal control. Readers will find fourteen chapters dedicated to optimization-based tools for robustness analysis, and decision-making in relation to feedback mechanisms—fault detection, for example—and three chapters putting forward applications where the model-based optimization brings a novel perspective. Developments in Model-Based Optimization and Control is a selection of contributions expanded and updated from the Optimisation-based Control and Estimation workshops held in November 2013 and November 2014. It forms a useful resource for academic researchers and graduate students interested in the state of the art in predictive control. Control engineers working in model-based optimization and control, particularly in its bioprocess applications will also find this collection instructive.
This book features the latest theoretical results and techniques in the field of guidance, navigation, and control (GNC) of vehicles and aircrafts. It covers a wide range of topics, including but not limited to, intelligent computing communication and control; new methods of navigation, estimation and tracking; control of multiple moving objects; manned and autonomous unmanned systems; guidance, navigation and control of miniature aircraft; and sensor systems for guidance, navigation and control etc. Presenting recent advances in the form of illustrations, tables, and text, it also provides detailed information of a number of the studies, to offer readers insights for their own research. In addition, the book addresses fundamental concepts and studies in the development of GNC, making it a valuable resource for both beginners and researchers wanting to further their understanding of guidance, navigation, and control.
Incorporating intelligence in industrial systems can help to increase productivity, cut-off production costs, and to improve working conditions and safety in industrial environments. This need has resulted in the rapid development of modeling and control methods for industrial systems and robots, of fault detection and isolation methods for the prevention of critical situations in industrial work-cells and production plants, of optimization methods aiming at a more profitable functioning of industrial installations and robotic devices and of machine intelligence methods aiming at reducing human intervention in industrial systems operation. To this end, the book analyzes and extends some main directions of research in modeling and control for industrial systems. These are: (i) industrial robots, (ii) mobile robots and autonomous vehicles, (iii) adaptive and robust control of electromechanical systems, (iv) filtering and stochastic estimation for multisensor fusion and sensorless control of industrial systems (iv) fault detection and isolation in robotic and industrial systems, (v) optimization in industrial automation and robotic systems design, and (vi) machine intelligence for robots autonomy. The book will be a useful companion to engineers and researchers since it covers a wide spectrum of problems in the area of industrial systems. Moreover, the book is addressed to undergraduate and post-graduate students, as an upper-level course supplement of automatic control and robotics courses.
This book includes papers from the 5th International Conference on Robot Intelligence Technology and Applications held at KAIST, Daejeon, Korea on December 13–15, 2017. It covers the following areas: artificial intelligence, autonomous robot navigation, intelligent robot system design, intelligent sensing and control, and machine vision. The topics included in this book are deep learning, deep neural networks, image understanding, natural language processing, speech/voice/text recognition, reasoning & inference, sensor integration/fusion/perception, multisensor data fusion, navigation/SLAM/localization, distributed intelligent algorithms and techniques, ubiquitous computing, digital creatures, intelligent agents, computer vision, virtual/augmented reality, surveillance, pattern recognition, gesture recognition, fingerprint recognition, animation and virtual characters, and emerging applications. This book is a valuable resource for robotics scientists, computer scientists, artificial intelligence researchers and professionals in universities, research institutes and laboratories.
Learning Control: Applications in Robotics and Complex Dynamical Systems provides a foundational understanding of control theory while also introducing exciting cutting-edge technologies in the field of learning-based control. State-of-the-art techniques involving machine learning and artificial intelligence (AI) are covered, as are foundational control theories and more established techniques such as adaptive learning control, reinforcement learning control, impedance control, and deep reinforcement control. Each chapter includes case studies and real-world applications in robotics, AI, aircraft and other vehicles and complex dynamical systems. Computational methods for control systems, particularly those used for developing AI and other machine learning techniques, are also discussed at length. - Provides foundational control theory concepts, along with advanced techniques and the latest advances in adaptive control and robotics - Introduces state-of-the-art learning-based control technologies and their applications in robotics and other complex dynamical systems - Demonstrates computational techniques for control systems - Covers iterative learning impedance control in both human-robot interaction and collaborative robots
Overview of recent advances in the analysis and design of health management systems for cooperating unmanned aerial vehicles. Cooperative health management (CHM) systems seek to provide adaptation to the presence of faults by capitalizing on the availability of interconnected computing, sensing and actuation resources. Complements the proposed CHM concepts by means of case studies and application examples. and presents fundamental principles and results encompassing optimization, systems theory, information theory, dynamics, modeling and simulation.
This book focuses on the fault-tolerant cooperative control (FTCC) of multiple unmanned aerial vehicles (multi-UAVs). It provides systematic and comprehensive descriptions of FTCC issues in multi-UAVs concerning faults, external disturbances, strongly unknown nonlinearities, and input saturation. Further, it addresses FTCC design from longitudinal motions to attitude motions, and outer-loop position motions of multi-UAVs. The book’s detailed control schemes can be used to enhance the flight safety of multi-UAVs. As such, the book offers readers an in-depth understanding of UAV safety in cooperative/formation flight and corresponding design methods. The FTCC methods presented here can also provide guidelines for engineers to improve the safety of aerospace engineering systems. The book offers a valuable asset for scientists and researchers, aerospace engineers, control engineers, lecturers and teachers, and graduates and undergraduates in the system and control community, especially those working in the field of UAV cooperation and multi-agent systems.
This book addresses a range of complex issues associated with condition monitoring (CM), fault diagnosis and detection (FDD) in smart buildings, wide area monitoring (WAM), wind energy conversion systems (WECSs), photovoltaic (PV) systems, structures, electrical systems, mechanical systems, smart grids, etc. The book’s goal is to develop and combine all advanced nonintrusive CMFD approaches on a common platform. To do so, it explores the main components of various systems used for CMFD purposes. The content is divided into three main parts, the first of which provides a brief introduction, before focusing on the state of the art and major research gaps in the area of CMFD. The second part covers the step-by-step implementation of novel soft computing applications in CMFD for electrical and mechanical systems. In the third and final part, the simulation codes for each chapter are included in an extensive appendix to support newcomers to the field.