Download Free Fatigue Resistance Of Riveted Steel Truss Bridge Members And Joints Book in PDF and EPUB Free Download. You can read online Fatigue Resistance Of Riveted Steel Truss Bridge Members And Joints and write the review.

Many old riveted railway bridges are replaced too soon due to a general lack of knowledge about the expected life span. This indicates the need for more information on fatigue and brittle fracture of riveted bridges. This book unveils extensive research and literature results on riveted bridges' fatigue live and shows how to take fatigue properly i
Current recommendations provided by the Federal Highway Administration (FHWA) for load rating of steel truss bridges were shown to be overly conservative in estimating the rivet capacity in shear by researchers from the University of Washington. Many steel truss bridges in place were constructed during the mid 20th century and require such load rating to determine if retrofitting, tear down, or a live loading limit is necessary. Past research on riveted connections has not included tests on as-built riveted connections, but rather shop fabricated specimens. Therefore, an enhanced understanding of ultimate rivet shear strength in gusset plates and the relation to connection length could improve the current procedure. Experiments on secondary riveted joints with various connection lengths were tested in a Universal Testing Machine (UTM) to determine the average ultimate shear strength of the rivets. The riveted connection was assembled with supporting members to improve capacity and stability and allow for testing of longer connections through shear failure. The test setup used for this investigation placed each rivet under a uniform load. This differed from previous research performed by Fisher and Rumpf (1967) on lap splices. Their loading mechanism caused the average ultimate strength of the rivets to decrease as connection length increases, and therefore a reduction factor was recommended by AASHTO for connections greater than 50 inches. The results of this test program in combination of past research will serve as an upper and lower bound, respectively, for connection behavior. Results showed that the average ultimate rivet shear strength was not a function of connection length under the designed load mechanism. The average ultimate rivet shear strength was larger than the values used in the load rating procedure and past research. The connecting elements deformed prior to failure of the rivets, which is a result of the rivets being stronger than the nominal values from the time of construction. This suggest that for gusset plate connections loaded in a distributed manner, that a reduction factor for ultimate rivet strength may not be needed, and there is potential that current reduction factors for longer connections could be reduced.
Paper 1: Results are presented of an analytical study of the dynamic behavior of simple-span highway bridges traversed by heavy vehicles. Paper 2: Inasmuch as many highway bridges are now being built with elastomeric bearings, it was considered desirable to study the vibration effects of such bridges. Paper 3: The method and procedure used in a digital computer program are described to find horizontal and vertical movements of all joints of a truss, given the member stresses and the structure properties. Paper 4: Results are summarized of tests made to demonstrate the effect of details on the fatigue behavior of welded flexural members.
"TRB's National Cooperative Highway Research Program (NCHRP) Report 721: Fatigue Evaluation of Steel Bridges provides proposed revisions to Section 7--Fatigue Evaluation of Steel Bridges of the American Association of State Highway and Transportation Officials Manual for Bridge Evaluation with detailed examples of the application of the proposed revisions."--Publisher's description.