Download Free Fatigue Evaluation Of Multiple Fiber Reinforced Polymer Bridge Deck Systems Over Existing Girders Book in PDF and EPUB Free Download. You can read online Fatigue Evaluation Of Multiple Fiber Reinforced Polymer Bridge Deck Systems Over Existing Girders and write the review.

Decks manufactured with fiber-reinforced polymer (FRP) composite materials are used in highway bridges. A performance evaluation of FRP composite decks subjected to simulated traffic loads that induce repetitive stress cycles under extremely high and low temperature is presented. Fatigue testing of three FRP composite bridge deck prototypes and one FRP-concrete hybrid bridge deck prototype under two extreme temperature conditions: -30 C ( -22 F), and 50 C (122 F) was conducted. The fatigue response of the deck prototypes was correlated with the baseline performance of a conventional reinforced concrete deck subjected to similar test conditions. Design loads were applied simultaneously at two points using servo-controlled hydraulic actuators specially designed and fabricated to perform under extreme temperatures. Quasi-static load-deflection and load-strain characteristics were determined at predetermined fatigue cycle levels. No significant distress was observed in any of the composite deck prototypes during ten million load cycles. The effects of extreme temperatures and accumulated load cycles on the load-deflection and load-strain response of FRP composite and FRP-concrete hybrid bridge decks are discussed based on the experimental results.
In recent years, fiber-reinforced polymer (FRP) deck systems have emerged as a viable alternative to conventional systems, namely reinforced-concrete slabs. The use of such systems to replace existing, deteriorated bridge deck systems offers both economic benefits and improved performance. The economic advantages are possible for a number of reasons: since such composite systems are lighter, considerable savings are realized by reduced transportation costs (several deck systems can be transported on one truck); erection costs will be less as relatively light cranes can be used to install the decks; and construction time is reduced, which eliminates long traffic delays. Due to the high resistance of FRP deck systems to environmental effects and corrosion attack, the long- term performance is also expected to be improved significantly, leading to lower maintenance and longer service life.
In an effort to better understand the performance of bridges with fiber reinforced polymer (FRP) composite decks, four different deck systems were installed in a 207-meter, three-lane, five-span bridge in Dayton, Ohio. The spans range from 40 to 44 m, and the bridge consists of six steel girders. The span lengths and large number of panels created a unique opportunity to evaluate the response of four common FRP bridge deck systems under identical traffic and environmental conditions. Over a six-year period, the performance of the bridge and its components were monitored through field documentations, long-term continuous monitoring of key responses, controlled static and dynamic truck load tests conducted on a regular basis, and multi-reference modal tests performed in conjunction with the truck load tests. The measurements from nearly 300 sensors allowed a detailed evaluation of critical design issues such as the behavior of FRP panel-steel girder connections and connections between FRP panels, impact factor and distribution factors for bridges with FRP decks, thermal characteristics of FRP panels versus conventional reinforced concrete decks, critical role of thermal behavior of FRP panels on the overall performance, level of composite action, and serviceability issues for bridges with FRP decks. Based on the presented information, a number of recommendation for improved behavior are made.
Presentations by advanced materials specialists from around the world. Of special interest in this volume are the presentations on application areas such as automotive and civil engineering, nanomaterials, ceramic/metal composites, smart materials, and composite structures.
Fiber-reinforced polymer (FRP) decks have been increasingly used for new construction and rehabilitation projects worldwide. The benefits of using FRP bridge decks, such as durability, light weight, high strength, reduced maintenance costs, and rapid installation, outweigh their initial in-place material costs when implemented in highway bridge projects. FRP Deck and Steel Girder Bridge Systems: Analysis and Design compiles the necessary information to facilitate the development of the standards and guidelines needed to promote further adoption of composite sandwich panels in construction. It also, for the first time, proposes a complete set of design guidelines. Providing both experimental investigations and theoretical analyses, this book covers three complementary parts: FRP decks, shear connectors between the deck and steel girders, and the behavior of bridge systems. The text presents stiffness and strength evaluations for FRP deck panels and FRP deck-girder bridge systems. While the FRP deck studies focus on honeycomb FPR sandwich panels over steel girder bridge systems, they can be adapted to other sandwich configurations. Similarly, the shear connection and bridge system studies can be applied to other types of FRP decks. Chapters discuss skin effect, core configuration, facesheet laminates, out-of-plane compression and sheer, mechanical shear connectors, and FRP deck–steel girder bridge systems. Based on the findings described in the text, the authors propose design guidelines and present design examples to illustrate application of the guidelines. In the final chapter, they also provide a systematic analysis and design approach for single-span FRP deck-stringer bridges. This book presents new and improved theories and combines analytical models, numerical analyses, and experimental investigations to devise a practical analysis procedure, resulting in FRP deck design formulations.
"This investigation studied the structural performance of FRP composite materials in bridge decks through in-place load tests and analytical studies. Two multi-panel bridge decks were studied: Saint Francis Street Bridge consisting of a deck built with four glass FRP (GFRP) honeycomb panels, whereas Waters Street Bridge consists of nine FRP-RC panels. The performance of the two bridges was monitored by load tests for over three to four years. The main objectives of this investigation were: to examine the deflection data in service that can be correlated to allowable deflections; to estimate if there is any stiffness degradation that can indicate distress in the deck; to compute the load fraction distribution between panels based on experimental data and attempt the load rating using the load test results"--Introduction, leaves 2-3.
Distortion-induced fatigue affects a large number of bridges within the US highway system. This type of damage is commonly observed at connections between cross frames and steel girders. The differential displacement induced by bridge traffic induces forces in the cross frames that cause out-of-plane distortion of the web, inducing highly localized stresses at the welds that tie the connection plate used to attach the cross frame to the girder. This report describes the results of an experimental program to evaluate the use of composite materials to prevent and repair distortion-induced fatigue damage in web-gap regions of steel girders. In this method of repair, a composite block is cast in place in the area surrounding the cross frame-to-girder connection to provide an alternate load path and reduce the stress demands in the welds of the connection. Two full-depth bridge girders were subjected to dynamic loading under a constant force range and allowed to develop fatigue cracks. The girders were subsequently repaired using composite blocks and subjected to several million fatigue cycles. Test results showed that the repair method was effective in halting the propagation of fatigue cracks in the bridge girders, and that it was particularly effective when anchor bolts were attached to the girder flange.