Download Free Fatigue Behavior Of Joints In Precast Prestressed Concrete Double Tee Bridge System Book in PDF and EPUB Free Download. You can read online Fatigue Behavior Of Joints In Precast Prestressed Concrete Double Tee Bridge System and write the review.

Masters Theses in the Pure and Applied Sciences was first conceived, published, and disseminated by the Center for Information and Numerical Data Analysis and Synthesis (CINDAS) * at Purdue University in 1957, starting its coverage of theses with the academic year 1955. Beginning with Volume 13, the printing and dissemination phases of the activity were transferred to University Microfilms/Xerox of Ann Arbor, Michigan, with the thougtit that such an arrangement would be more beneficial to the academic and general scientific and technical community. After five years of this joint undertaking we had concluded that it was in the interest of all con cerned if the printing and distribution of the volumes were handled by an interna tional publishing house to assure improved service and broader dissemination. Hence, starting with Volume 18, Masters Theses in the Pure and Applied Sciences has been disseminated on a worldwide basis by Plenum Publishing Cor poration of New York, and in the same year the coverage was broadened to include Canadian universities. All back issues can also be ordered from Plenum. We have reported in Volume 31 (thesis year 1986) a total of 11 ,480 theses titles trom 24 Canadian and 182 United States universities. We are sure that this broader base tor these titles reported will greatly enhance the value ot this important annual reterence work. While Volume 31 reports theses submitted in 1986, on occasion, certain univer sities do re port theses submitted in previousyears but not reported at the time.
Continuous longitudinal and transverse U-bar joint connections between flanges of the decked bulb-Ts (DBTs) or between precast panels for accelerated bridge construction are investigated. The procedure for selecting durable closure pour (CP) materials for the connections is discussed firstly. The accelerated construction is quantified as two categories: overnight cure and 7-day cure of CP materials. Candidate materials are selected first based on literature review as well as tests of compressive strength and flow and workability. Then, performance criteria for selecting durable CP materials for both categories are developed based on durability tests of selected candidate materials. These durability tests include freezing-and-thawing durability, shrinkage, bond, and permeability tests. To investigate the longitudinal U-bar joint details, four pairs of full-scale slabs connected by a U-bar detail with one of the selected CP materials, overnight cure and 7-day cure, were tested. The loading demand necessary in the slab testing is determined based on the maximum forces in the longitudinal joint from an analytical parametric study. Static and fatigue tests under four-point flexural loading and three-point flexural-shear loading were conducted. Test results were evaluated based on flexural capacity, curvature behavior, cracking, deflection and steel strain. The transverse U-bar joint details are investigated to provide negative moment continuity in the multi-span bridges. Four full-scale specimens connected by a U-bar detail with one of the selected CP materials, overnight cure and 7-day cure, were tested. Static and fatigue tests under tension loading were conducted. The loading demand necessary in the beam testing is determined based on the maximum forces in the transverse joint from an analytical study. Test results were evaluated based on tension capacity, cracking, displacement and steel strain. Based on the test results, the developed longitudinal and transverse U-bar joint details are viable connection systems.