Download Free Fast Techniques For Integrated Circuit Design Book in PDF and EPUB Free Download. You can read online Fast Techniques For Integrated Circuit Design and write the review.

Learn how to use estimation techniques to solve real-world IC design problems and accelerate design processes with this practical guide.
This book begins with the premise that energy demands are directing scientists towards ever-greener methods of power management, so highly integrated power control ICs (integrated chip/circuit) are increasingly in demand for further reducing power consumption. A timely and comprehensive reference guide for IC designers dealing with the increasingly widespread demand for integrated low power management Includes new topics such as LED lighting, fast transient response, DVS-tracking and design with advanced technology nodes Leading author (Chen) is an active and renowned contributor to the power management IC design field, and has extensive industry experience Accompanying website includes presentation files with book illustrations, lecture notes, simulation circuits, solution manuals, instructors’ manuals, and program downloads
Learn how analog circuit simulators work with these easy to use numerical recipes implemented in the popular Python programming environment. This book covers the fundamental aspects of common simulation analysis techniques and algorithms used in professional simulators today in a pedagogical way through simple examples. The book covers not just linear analyses but also nonlinear ones like steady state simulations. It is rich with examples and exercises and many figures to help illustrate the points. For the interested reader, the fundamental mathematical theorems governing the simulation implementations are covered in the appendices. Demonstrates circuit simulation algorithms through actual working code, enabling readers to build an intuitive understanding of what are the strengths and weaknesses with various methods Provides details of all common, modern circuit simulation methods in one source Provides Python code for simulations via download Includes transistor numerical modeling techniques, based on simplified transistor physics Provides detailed mathematics and ample references in appendices
This book offers an overview of power electronic applications in the study of power integrated circuit (IC) design, collecting novel research ideas and insights into fast transient response to prevent the output voltage from dropping significantly at the undershoot. It also discusses techniques and training to save energy and increase load efficiency, as well as fast transient response and high efficiency, which are the most important factors for consumer products that implement power IC. Lastly, the book focuses on power electronics for system loop analysis and optimal compensation design to help users and engineers implement their applications. The book is a valuable resource for university researchers, power IC R&D engineers, application engineers and graduate students in power electronics who wish to learn about the power IC design principles, methods, system behavior, and applications in consumer products.
This book reviews the state of the art of very high speed digital integrated circuits. Commercial applications are in fiber optic transmission systems operating at 10, 40, and 100 Gb/s, while the military application is ADCs and DACs for microwave radar. The book contains detailed descriptions of the design, fabrication, and performance of wideband Si/SiGe-, GaAs-, and InP-based bipolar transistors. The analysis, design, and performance of high speed CMOS, silicon bipolar, and III-V digital ICs are presented in detail, with emphasis on application in optical fiber transmission and mixed signal ICs. The underlying physics and circuit design of rapid single flux quantum (RSFQ) superconducting logic circuits are reviewed, and there is extensive coverage of recent integrated circuit results in this technology.
Analogue IC Design has become the essential title covering the current-mode approach to integrated circuit design. The approach has sparked much interest in analogue electronics and is linked to important advances in integrated circuit technology, such as CMOS VLSI which allows mixed analogue and digital circuits and high-speed GaAs processing.
A transistor-level, design-intensive overview of high speed and high frequency monolithic integrated circuits for wireless and broadband systems from 2 GHz to 200 GHz, this comprehensive text covers high-speed, RF, mm-wave, and optical fibre circuits using nanoscale CMOS, SiGe BiCMOS, and III-V technologies. Step-by-step design methodologies, end-of chapter problems, and practical simulation and design projects are provided, making this an ideal resource for senior undergraduate and graduate courses in circuit design. With an emphasis on device-circuit topology interaction and optimization, it gives circuit designers and students alike an in-depth understanding of device structures and process limitations affecting circuit performance.
This book targets custom IC designers who are encountering variation issues in their designs, especially for modern process nodes at 45nm and below, such as statistical process variations, environmental variations, and layout effects. It teaches them the state-of-the-art in Variation-Aware Design tools, which help the designer to analyze quickly the variation effects, identify the problems, and fix the problems. Furthermore, this book describes the algorithms and algorithm behavior/performance/limitations, which is of use to designers considering these tools, designers using these tools, CAD researchers, and CAD managers.
MOS technology has rapidly become the de facto standard for mixed-signal integrated circuit design due to the high levels of integration possible as device geometries shrink to nanometer scales. The reduction in feature size means that the number of transistor and clock speeds have increased significantly. In fact, current day microprocessors contain hundreds of millions of transistors operating at multiple gigahertz. Furthermore, this reduction in feature size also has a significant impact on mixed-signal circuits. Due to the higher levels of integration, the majority of ASICs possesses some analog components. It has now become nearly mandatory to integrate both analog and digital circuits on the same substrate due to cost and power constraints. This book presents some of the newer problems and opportunities offered by the small device geometries and the high levels of integration that is now possible. The aim of this book is to summarize some of the most critical aspects of high-speed analog/RF communications circuits. Attention is focused on the impact of scaling, substrate noise, data converters, RF and wireless communication circuits and wireline communication circuits, including high-speed I/O. Contents: Achieving Analog Accuracy in Nanometer CMOS (M P Flynn et al.); Self-Induced Noise in Integrated Circuits (R Gharpurey & S Naraghi); High-Speed Oversampling Analog-to-Digital Converters (A Gharbiya et al.); Designing LC VCOs Using Capacitive Degeneration Techniques (B Jung & R Harjani); Fully Integrated Frequency Synthesizers: A Tutorial (S T Moon et al.); Recent Advances and Design Trends in CMOS Radio Frequency Integrated Circuits (D J Allstot et al.); Equalizers for High-Speed Serial Links (P K Hanumolu et al.); Low-Power, Parallel Interface with Continuous-Time Adaptive Passive Equalizer and Crosstalk Cancellation (C P Yue et al.). Readership: Technologists, scientists, and engineers in the field of high-speed communication circuits. It can also be used as a textbook for graduate and advanced undergraduate courses.
Reliability concerns and the limitations of process technology can sometimes restrict the innovation process involved in designing nano-scale analog circuits. The success of nano-scale analog circuit design requires repeat experimentation, correct analysis of the device physics, process technology, and adequate use of the knowledge database. Starting with the basics, Nano-Scale CMOS Analog Circuits: Models and CAD Techniques for High-Level Design introduces the essential fundamental concepts for designing analog circuits with optimal performances. This book explains the links between the physics and technology of scaled MOS transistors and the design and simulation of nano-scale analog circuits. It also explores the development of structured computer-aided design (CAD) techniques for architecture-level and circuit-level design of analog circuits. The book outlines the general trends of technology scaling with respect to device geometry, process parameters, and supply voltage. It describes models and optimization techniques, as well as the compact modeling of scaled MOS transistors for VLSI circuit simulation. • Includes two learning-based methods: the artificial neural network (ANN) and the least-squares support vector machine (LS-SVM) method • Provides case studies demonstrating the practical use of these two methods • Explores circuit sizing and specification translation tasks • Introduces the particle swarm optimization technique and provides examples of sizing analog circuits • Discusses the advanced effects of scaled MOS transistors like narrow width effects, and vertical and lateral channel engineering Nano-Scale CMOS Analog Circuits: Models and CAD Techniques for High-Level Design describes the models and CAD techniques, explores the physics of MOS transistors, and considers the design challenges involving statistical variations of process technology parameters and reliability constraints related to circuit design.