Download Free Fast Reactors Book in PDF and EPUB Free Download. You can read online Fast Reactors and write the review.

This book is a complete update of the classic 1981 FAST BREEDER REACTORS textbook authored by Alan E. Waltar and Albert B. Reynolds, which , along with the Russian translation, served as a major reference book for fast reactors systems. Major updates include transmutation physics (a key technology to substantially ameliorate issues associated with the storage of high-level nuclear waste ), advances in fuels and materials technology (including metal fuels and cladding materials capable of high-temperature and high burnup), and new approaches to reactor safety (including passive safety technology), New chapters on gas-cooled and lead-cooled fast spectrum reactors are also included. Key international experts contributing to the text include Chaim Braun, (Stanford University) Ronald Omberg, (Pacific Northwest National Laboratory, Massimo Salvatores (CEA, France), Baldev Raj, (Indira Gandhi Center for Atomic Research, India) , John Sackett (Argonne National Laboratory), Kevan Weaver, (TerraPower Corporation) ,James Seinicki(Argonne National Laboratory). Russell Stachowski (General Electric), Toshikazu Takeda (University of Fukui, Japan), and Yoshitaka Chikazawa (Japan Atomic Energy Agency).
Super Light Water Reactors and Super Fast Reactors provides an overview of the design and analysis of nuclear power reactors. Readers will gain the understanding of the conceptual design elements and specific analysis methods of supercritical-pressure light water cooled reactors. Nuclear fuel, reactor core, plant control, plant stand-up and stability are among the topics discussed, in addition to safety system and safety analysis parameters. Providing the fundamentals of reactor design criteria and analysis, this volume is a useful reference to engineers, industry professionals, and graduate students involved with nuclear engineering and energy technology.
An invaluable resource for both graduate-level engineering students and practising nuclear engineers who want to expand their knowledge of fast nuclear reactors, the reactors of the future. This book is a concise yet comprehensive introduction to all aspects of fast reactor engineering. It covers topics including neutron physics; neutron flux spectra; flux distribution; Doppler and coolant temperature coefficients; the performance of ceramic and metal fuels under irradiation, structural changes, and fission-product migration; the effects of irradiation and corrosion on structural materials, irradiation swelling; heat transfer in the reactor core and its effect on core design; coolants including sodium and lead-bismuth alloy; coolant circuits; pumps; heat exchangers and steam generators; and plant control. The book includes new discussions on lead-alloy and gas coolants, metal fuel, the use of reactors to consume radioactive waste, and accelerator-driven subcritical systems.
Fast Reactor Safety deals with safety design criteria and methodology for fast reactors. Topics covered include safety evaluation methods, system disturbances, containment, and licensing. The characteristics of fast reactors, including heat ratings and coolants, are also discussed. Comprised of six chapters, this book opens with an overview of methods used to evaluate nuclear safety, along with neutron kinetics, thermal and feedback effects, and fault tree analysis. The reader is then introduced to possible system disturbances in relation to three distinct fast reactor systems: liquid-metal-cooled fast breeder reactors, gas-cooled fast breeder reactors, and steam-cooled fast breeder reactors. The next chapter looks at safety criteria that are set to define the design of a safe plant, together with the safety features that might be included. The remaining chapters focus on the particular problems of a sodium-cooled design; containment building and primary circuit and vessel containment; and licensing of the plant. This monograph is intended for graduates and undergraduates in nuclear engineering who are attending courses in reactor safety.
Sodium Fast Reactors with Closed Fuel Cycle delivers a detailed discussion of an important technology that is being harnessed for commercial energy production in many parts of the world. Presenting the state of the art of sodium-cooled fast reactors with closed fuel cycles, this book:Offers in-depth coverage of reactor physics, materials, design, s
Fast Reactors: A Solution to Fight Against Global Warming presents the current status of fast-reactor nuclear generation technology, with a focus on ecology and sustainability benefits for the future. Author Joel Guidez analyzes past failures and limited deployment reasons to help drive this power generation method forward to a cleaner and more sustainable energy environment. The book covers safety aspects, short-life waste management, multirecycling, and biodiversity preservation to provide a well-rounded reference on the topic. Analyzes reasons for past failures and presents the advantages of fast reactors Reviews the status of fast-reactor technology, for sodium fast reactors and molten salt reactors with liquid fuel Presents ways in which fast nuclear reactors can help fight climate change and promote sustainability for the future
Fast Breeder Reactors: An Engineering Introduction is an introductory text to fast breeder reactors and covers topics ranging from reactor physics and design to engineering and safety considerations. Reactor fuels, coolant circuits, steam plants, and control systems are also discussed. This book is comprised of five chapters and opens with a brief summary of the history of fast reactors, with emphasis on international and the prospect of making accessible enormous reserves of energy. The next chapter deals with the physics of fast reactors and considers calculation methods, flux distribution, breeding, control rods, shielding, and reactivity coefficients. The chemistry of fast reactor fuels is also considered, along with the engineering of the core of a power-producing fast reactor and of coolant circuits and steam plants. The final chapter examines aspects of reactor safety that are peculiar to sodium-cooled oxide-fueled fast reactors and describes the inherent features of such a reactor that make for safety, followed by an analysis of risks and some of the protective systems that can be used. This monograph will be of interest to nuclear scientists, physicists, and engineers.
"Based on a recommendation from the Technical Working Group on Fast Reactors, this publication is a regular update of previous publications on fast reactor technology. The publication provides comprehensive and detailed information on the technology of fast neutron reactors. The focus is on practical issues that are useful to engineers, scientists, managers, university students and professors. The main issues of discussion are experience in design, construction, operation and decommissioning, various areas of research and development, engineering, safety and national strategies, and public acceptance of fast reactors. In the summary the reader will find national strategies, international initiatives on innovative (i.e. Generation IV) systems and an assessment of public acceptance as related to fast reactors."--Résumé de l'éditeur.