Download Free Fast Reactor Physics Book in PDF and EPUB Free Download. You can read online Fast Reactor Physics and write the review.

Fundamentals of Nuclear Reactor Physics offers a one-semester treatment of the essentials of how the fission nuclear reactor works, the various approaches to the design of reactors, and their safe and efficient operation . It provides a clear, general overview of atomic physics from the standpoint of reactor functionality and design, including the sequence of fission reactions and their energy release. It provides in-depth discussion of neutron reactions, including neutron kinetics and the neutron energy spectrum, as well as neutron spatial distribution. It includes ample worked-out examples and over 100 end-of-chapter problems. Engineering students will find this applications-oriented approach, with many worked-out examples, more accessible and more meaningful as they aspire to become future nuclear engineers. A clear, general overview of atomic physics from the standpoint of reactor functionality and design, including the sequence of fission reactions and their energy release In-depth discussion of neutron reactions, including neutron kinetics and the neutron energy spectrum, as well as neutron spatial distribution Ample worked-out examples and over 100 end-of-chapter problems Full Solutions Manual
This book is a complete update of the classic 1981 FAST BREEDER REACTORS textbook authored by Alan E. Waltar and Albert B. Reynolds, which , along with the Russian translation, served as a major reference book for fast reactors systems. Major updates include transmutation physics (a key technology to substantially ameliorate issues associated with the storage of high-level nuclear waste ), advances in fuels and materials technology (including metal fuels and cladding materials capable of high-temperature and high burnup), and new approaches to reactor safety (including passive safety technology), New chapters on gas-cooled and lead-cooled fast spectrum reactors are also included. Key international experts contributing to the text include Chaim Braun, (Stanford University) Ronald Omberg, (Pacific Northwest National Laboratory, Massimo Salvatores (CEA, France), Baldev Raj, (Indira Gandhi Center for Atomic Research, India) , John Sackett (Argonne National Laboratory), Kevan Weaver, (TerraPower Corporation) ,James Seinicki(Argonne National Laboratory). Russell Stachowski (General Electric), Toshikazu Takeda (University of Fukui, Japan), and Yoshitaka Chikazawa (Japan Atomic Energy Agency).
Fast Breeder Reactors: An Engineering Introduction is an introductory text to fast breeder reactors and covers topics ranging from reactor physics and design to engineering and safety considerations. Reactor fuels, coolant circuits, steam plants, and control systems are also discussed. This book is comprised of five chapters and opens with a brief summary of the history of fast reactors, with emphasis on international and the prospect of making accessible enormous reserves of energy. The next chapter deals with the physics of fast reactors and considers calculation methods, flux distribution, breeding, control rods, shielding, and reactivity coefficients. The chemistry of fast reactor fuels is also considered, along with the engineering of the core of a power-producing fast reactor and of coolant circuits and steam plants. The final chapter examines aspects of reactor safety that are peculiar to sodium-cooled oxide-fueled fast reactors and describes the inherent features of such a reactor that make for safety, followed by an analysis of risks and some of the protective systems that can be used. This monograph will be of interest to nuclear scientists, physicists, and engineers.
An invaluable resource for both graduate-level engineering students and practising nuclear engineers who want to expand their knowledge of fast nuclear reactors, the reactors of the future. This book is a concise yet comprehensive introduction to all aspects of fast reactor engineering. It covers topics including neutron physics; neutron flux spectra; flux distribution; Doppler and coolant temperature coefficients; the performance of ceramic and metal fuels under irradiation, structural changes, and fission-product migration; the effects of irradiation and corrosion on structural materials, irradiation swelling; heat transfer in the reactor core and its effect on core design; coolants including sodium and lead-bismuth alloy; coolant circuits; pumps; heat exchangers and steam generators; and plant control. The book includes new discussions on lead-alloy and gas coolants, metal fuel, the use of reactors to consume radioactive waste, and accelerator-driven subcritical systems.
Advanced Reactors: Physics, Design and Economics contains the proceedings of the International Conference held at Atlanta, Georgia on September 8-11, 1974. Organized according to the sessions of the conference, this book first describes the national programs for the development of advanced reactors. Subsequent sessions centers on economics of advanced reactors; developments in reactor theory; advanced reactor experiments and analysis; cross section data and calculational methods. The last three sessions focus on sensitivity analysis of integral reactor parameters; problems in the design of advanced reactors; and the design and operational experience for advanced reactors.
An introductory text for broad areas of nuclear reactor physics Nuclear Reactor Physics and Engineering offers information on analysis, design, control, and operation of nuclear reactors. The author—a noted expert on the topic—explores the fundamentals and presents the mathematical formulations that are grounded in differential equations and linear algebra. The book puts the focus on the use of neutron diffusion theory for the development of techniques for lattice physics and global reactor system analysis. The author also includes recent developments in numerical algorithms, including the Krylov subspace method, and the MATLAB software, including the Simulink toolbox, for efficient studies of steady-state and transient reactor configurations. In addition, nuclear fuel cycle and associated economics analysis are presented, together with the application of modern control theory to reactor operation. This important book: Provides a comprehensive introduction to the fundamental concepts of nuclear reactor physics and engineering Contains information on nuclear reactor kinetics and reactor design analysis Presents illustrative examples to enhance understanding Offers self-contained derivation of fluid conservation equations Written for undergraduate and graduate students in nuclear engineering and practicing engineers, Nuclear Reactor Physics and Engineering covers the fundamental concepts and tools of nuclear reactor physics and analysis.
The objective of the Reactor Physics Quarterly Report is to inform the scientific community in a timely manner of the technical progress made on the many phases of reactor physics work within the laboratory. The report contains brief technical discussions of accomplishments in all areas where significant progress has been made during the quarter. The results presented herein should be considered preliminary, and do not constitute final publication of the work. A list of publications and papers issued during the last quarter is included in the report. Anyone desiring additional information concerning the work reported herein is encouraged to contact the author directly.