Download Free Fast Neutrons In The Treatment Of Cancer Book in PDF and EPUB Free Download. You can read online Fast Neutrons In The Treatment Of Cancer and write the review.

Neutron capture therapy (NCT) is based on the ability of the non-radioactive isotope boron-10 to capture thermal neutrons with very high probability and immediately to release heavy particles with a path length of one cell diameter, which in principle allows for tumor cell-selective high-LET particle radiotherapy. This book provides a comprehensive summary of the progress made in NCT in recent years. Individual sections cover all important aspects, including neutron sources, boron chemistry, drugs for NCT, dosimetry, and radiation biology. The use of NCT in a variety of malignancies and also some non-malignant diseases is extensively discussed. NCT is clearly shown to be a promising modality at the threshold of wider clinical application. All of the chapters are written by experienced specialists in language that will be readily understood by all participating disciplines.
This comprehensive encyclopedia, comprising a wide range of entries written by leading experts, provides detailed information on radiation oncology, including the most recent developments in the field. It will be of particular value for basic and clinical scientists in academia, practice, and industry and will also be of benefit to those in related fields, students, teachers, and interested laypersons.
It was not too many years ago that the role of chemotherapy for head and neck cancer consisted of single-agent methotrexate for selected patients with recurrent disease. In the past decade, multiple new agents, high-dose chemotherapy, combinations, and intra-arterial approaches have been used for the patient with recurrent disease. Wheeler critically assesses the current status of these approaches. When oncologists began testing chemotherapy in the combined modality approach, trials consisted of induction chemotherapy and use of single agents as radiosensitizers. Although a great deal has been learned from these trials, benefit in terms of survival has been marginal. Even more promising may be the concomitant use of combination chemo therapy and radiation. Taylor describes the encouraging results as well as the potential. Induction chemotherapy may have a second important goal in addition to improving curability-it could be used for organ preservation. Dimery et al., present the background for this approach in the patient with laryngeal cancer as well as a description of their randomized trial for voice preservation. Head and neck squamous cancers are a heterogeneous group of diseases, and surgeons have long sought parameters that will help predict outcome.
Perfect for radiation oncology physicians and residents needing a multidisciplinary, treatment-focused resource, this updated edition continues to provide the latest knowledge in this consistently growing field. Not only will you broaden your understanding of the basic biology of disease processes, you'll also access updated treatment algorithms, information on techniques, and state-of-the-art modalities. The consistent and concise format provides just the right amount of information, making Clinical Radiation Oncology a welcome resource for use by the entire radiation oncology team. Content is templated and divided into three sections -- Scientific Foundations of Radiation Oncology, Techniques and Modalities, and Disease Sites - for quick access to information. Disease Sites chapters summarize the most important issues on the opening page and include a full-color format, liberal use of tables and figures, a closing section with a discussion of controversies and problems, and a treatment algorithm that reflects the treatment approach of the authors. Chapters have been edited for scientific accuracy, organization, format, and adequacy of outcome data (such as disease control, survival, and treatment tolerance). Allows you to examine the therapeutic management of specific disease sites based on single-modality and combined-modality approaches. Features an emphasis on providing workup and treatment algorithms for each major disease process, as well as the coverage of molecular biology and its relevance to individual diseases. Two new chapters provide an increased emphasis on stereotactic radiosurgery (SRS) and stereotactic body irradiation (SBRT). New Associate Editor, Dr. Andrea Ng, offers her unique perspectives to the Lymphoma and Hematologic Malignancies section. Key Points are summarized at the beginning of each disease-site chapter, mirroring the template headings and highlighting essential information and outcomes. Treatment algorithms and techniques, together with discussions of controversies and problems, reflect the treatment approaches employed by the authors. Disease Site Overviews allow each section editor to give a unique perspective on important issues, while online updates to Disease Site chapters ensure your knowledge is current. Disease Site chapters feature updated information on disease management and outcomes. Four videos accessible on Expert Consult include Intraoperative Irradiation, Prostate Brachytherapy, Penile Brachytherapy, and Ocular Melanoma. Thirty all-new anatomy drawings increase your visual understanding. Expert Consult eBook version included with purchase. This enhanced eBook experience allows you to search all of the text, figures, and references from the book on a variety of devices.
Proton Therapy Physics goes beyond current books on proton therapy to provide an in-depth overview of the physics aspects of this radiation therapy modality, eliminating the need to dig through information scattered in the medical physics literature. After tracing the history of proton therapy, the book summarizes the atomic and nuclear physics background necessary for understanding proton interactions with tissue. It describes the physics of proton accelerators, the parameters of clinical proton beams, and the mechanisms to generate a conformal dose distribution in a patient. The text then covers detector systems and measuring techniques for reference dosimetry, outlines basic quality assurance and commissioning guidelines, and gives examples of Monte Carlo simulations in proton therapy. The book moves on to discussions of treatment planning for single- and multiple-field uniform doses, dose calculation concepts and algorithms, and precision and uncertainties for nonmoving and moving targets. It also examines computerized treatment plan optimization, methods for in vivo dose or beam range verification, the safety of patients and operating personnel, and the biological implications of using protons from a physics perspective. The final chapter illustrates the use of risk models for common tissue complications in treatment optimization. Along with exploring quality assurance issues and biological considerations, this practical guide collects the latest clinical studies on the use of protons in treatment planning and radiation monitoring. Suitable for both newcomers in medical physics and more seasoned specialists in radiation oncology, the book helps readers understand the uncertainties and limitations of precisely shaped dose distribution.
Thoroughly revised and updated, the 2nd Edition presents all of the latest advances in the field, including the most recent technologies and techniques. For each tumor site discussed, readers will find unparalleled coverage of multiple treatment plans, histology and biology of the tumor, its anatomic location and routes of spread, and utilization of specialized techniques. This convenient source also reviews all of the basic principles that underlie the selection and application of radiation as a treatment modality, including radiobiology, radiation physics, immobilization and simulation, high dose rate, intraoperative irradation, and more. Comprehensively reviews each topic, with a distinct clinical orientation throughout. Serves as a foundation for the basic principles that underlie the selection and application of radiation as a treatment modality, including radiobiology, radiation physics, immobilization and simulation, high dose rate, intraoperative irradation, and more. Guides readers through all stages of treatment application with step-by-step techniques for the assessment and implementation of radiotherapeutic options. Presents latest information on brachytherapy * 3-dimensional conformal treatment planning * sterotactic radiosurgery * and radiolabeled antibodies. Discusses the recent use of radiotherapy in the treatment of primary lymphoma, leukemia, multiple myeloma, and cancers of the prostate and central nervous system. Includes the latest AJCC staging system guidelines. Offers the latest advances in techniques, allowing you to deliver doses precisely to areas affected by malignancy and spare healthy tissue. Presents new chapters on the hottest topics including Three Dimensional Conformal Radiotherapy * Intensity Modulated Radiotherapy * Breathing Synchronized Radiotherapy * Plasma Cell Tumors: Multiple Myeloma and Solitary Plasmacytoma * Extracranial Stereotactic Radioablation * and [Imaging of the] Head and Neck * Thorax * Abdomen * and Pelvis.
The scientific and clinical foundations of Radiation Therapy are cross-disciplinary. This book endeavours to bring together the physics, the radiobiology, the main clinical aspects as well as available clinical evidence behind Radiation Therapy, presenting mutual relationships between these disciplines and their role in the advancements of radiation oncology.
This book is the seventh in a series of titles from the National Research Council that addresses the effects of exposure to low dose LET (Linear Energy Transfer) ionizing radiation and human health. Updating information previously presented in the 1990 publication, Health Effects of Exposure to Low Levels of Ionizing Radiation: BEIR V, this book draws upon new data in both epidemiologic and experimental research. Ionizing radiation arises from both natural and man-made sources and at very high doses can produce damaging effects in human tissue that can be evident within days after exposure. However, it is the low-dose exposures that are the focus of this book. So-called “late” effects, such as cancer, are produced many years after the initial exposure. This book is among the first of its kind to include detailed risk estimates for cancer incidence in addition to cancer mortality. BEIR VII offers a full review of the available biological, biophysical, and epidemiological literature since the last BEIR report on the subject and develops the most up-to-date and comprehensive risk estimates for cancer and other health effects from exposure to low-level ionizing radiation.
This book reevaluates the health risks of ionizing radiation in light of data that have become available since the 1980 report on this subject was published. The data include new, much more reliable dose estimates for the A-bomb survivors, the results of an additional 14 years of follow-up of the survivors for cancer mortality, recent results of follow-up studies of persons irradiated for medical purposes, and results of relevant experiments with laboratory animals and cultured cells. It analyzes the data in terms of risk estimates for specific organs in relation to dose and time after exposure, and compares radiation effects between Japanese and Western populations.