Download Free Families Of Conformally Covariant Differential Operators Q Curvature And Holography Book in PDF and EPUB Free Download. You can read online Families Of Conformally Covariant Differential Operators Q Curvature And Holography and write the review.

This book studies structural properties of Q-curvature from an extrinsic point of view by regarding it as a derived quantity of certain conformally covariant families of differential operators which are associated to hypersurfaces.
Conformal invariants (conformally invariant tensors, conformally covariant differential operators, conformal holonomy groups etc.) are of central significance in differential geometry and physics. Well-known examples of such operators are the Yamabe-, the Paneitz-, the Dirac- and the twistor operator. The aim of the seminar was to present the basic ideas and some of the recent developments around Q-curvature and conformal holonomy. The part on Q-curvature discusses its origin, its relevance in geometry, spectral theory and physics. Here the influence of ideas which have their origin in the AdS/CFT-correspondence becomes visible. The part on conformal holonomy describes recent classification results, its relation to Einstein metrics and to conformal Killing spinors, and related special geometries.
We study conformal symmetry breaking differential operators which map dif-ferential forms on Rn to differential forms on a codimension one subspace Rn−1. These operators are equivariant with respect to the conformal Lie algebra of the subspace Rn−1. They correspond to homomorphisms of generalized Verma mod-ules for so(n, 1) into generalized Verma modules for so(n+1, 1) both being induced from fundamental form representations of a parabolic subalgebra. We apply the F -method to derive explicit formulas for such homomorphisms. In particular, we find explicit formulas for the generators of the intertwining operators of the re-lated branching problems restricting generalized Verma modules for so(n +1, 1) to so(n, 1). As consequences, we derive closed formulas for all conformal symmetry breaking differential operators in terms of the first-order operators d, δ, d¯ and δ¯ and certain hypergeometric polynomials. A dominant role in these studies is played by two infinite sequences of symmetry breaking differential operators which depend on a complex parameter λ. Their values at special values of λ appear as factors in two systems of factorization identities which involve the Branson-Gover opera- tors of the Euclidean metrics on Rn and Rn−1 and the operators d, δ, d¯ and δ¯ as factors, respectively. Moreover, they naturally recover the gauge companion and Q-curvature operators of the Euclidean metric on the subspace Rn−1, respectively.
This volume contains papers on semi-linear and quasi-linear elliptic equations from the workshop on Nonlinear Elliptic Partial Differential Equations, in honor of Jean-Pierre Gossez's 65th birthday, held September 2-4, 2009 at the Universite Libre de Bruxelles, Belgium. The workshop reflected Gossez's contributions in nonlinear elliptic PDEs and provided an opening to new directions in this very active research area. Presentations covered recent progress in Gossez's favorite topics, namely various problems related to the $p$-Laplacian operator, the antimaximum principle, the Fucik Spectrum, and other related subjects. This volume will be of principle interest to researchers in nonlinear analysis, especially in partial differential equations of elliptic type.
This monograph describes some of the most interesting results obtained by the mathematicians and physicists collaborating in the CRC 647 "Space – Time – Matter", in the years 2005 - 2016. The work presented concerns the mathematical and physical foundations of string and quantum field theory as well as cosmology. Important topics are the spaces and metrics modelling the geometry of matter, and the evolution of these geometries. The partial differential equations governing such structures and their singularities, special solutions and stability properties are discussed in detail. Contents Introduction Algebraic K-theory, assembly maps, controlled algebra, and trace methods Lorentzian manifolds with special holonomy – Constructions and global properties Contributions to the spectral geometry of locally homogeneous spaces On conformally covariant differential operators and spectral theory of the holographic Laplacian Moduli and deformations Vector bundles in algebraic geometry and mathematical physics Dyson–Schwinger equations: Fix-point equations for quantum fields Hidden structure in the form factors ofN = 4 SYM On regulating the AdS superstring Constraints on CFT observables from the bootstrap program Simplifying amplitudes in Maxwell-Einstein and Yang-Mills-Einstein supergravities Yangian symmetry in maximally supersymmetric Yang-Mills theory Wave and Dirac equations on manifolds Geometric analysis on singular spaces Singularities and long-time behavior in nonlinear evolution equations and general relativity
This work is the first systematic study of all possible conformally covariant differential operators transforming differential forms on a Riemannian manifold X into those on a submanifold Y with focus on the model space (X, Y) = (Sn, Sn-1). The authors give a complete classification of all such conformally covariant differential operators, and find their explicit formulæ in the flat coordinates in terms of basic operators in differential geometry and classical hypergeometric polynomials. Resulting families of operators are natural generalizations of the Rankin–Cohen brackets for modular forms and Juhl's operators from conformal holography. The matrix-valued factorization identities among all possible combinations of conformally covariant differential operators are also established. The main machinery of the proof relies on the "F-method" recently introduced and developed by the authors. It is a general method to construct intertwining operators between C∞-induced representations or to find singular vectors of Verma modules in the context of branching rules, as solutions to differential equations on the Fourier transform side. The book gives a new extension of the F-method to the matrix-valued case in the general setting, which could be applied to other problems as well. This book offers a self-contained introduction to the analysis of symmetry breaking operators for infinite-dimensional representations of reductive Lie groups. This feature will be helpful for active scientists and accessible to graduate students and young researchers in differential geometry, representation theory, and theoretical physics.
The authors study higher form Proca equations on Einstein manifolds with boundary data along conformal infinity. They solve these Laplace-type boundary problems formally, and to all orders, by constructing an operator which projects arbitrary forms to solutions. They also develop a product formula for solving these asymptotic problems in general. The central tools of their approach are (i) the conformal geometry of differential forms and the associated exterior tractor calculus, and (ii) a generalised notion of scale which encodes the connection between the underlying geometry and its boundary. The latter also controls the breaking of conformal invariance in a very strict way by coupling conformally invariant equations to the scale tractor associated with the generalised scale.
This book features a selection of articles based on the XXXV Białowieża Workshop on Geometric Methods in Physics, 2016. The series of Białowieża workshops, attended by a community of experts at the crossroads of mathematics and physics, is a major annual event in the field. The works in this book, based on presentations given at the workshop, are previously unpublished, at the cutting edge of current research, typically grounded in geometry and analysis, and with applications to classical and quantum physics. In 2016 the special session "Integrability and Geometry" in particular attracted pioneers and leading specialists in the field. Traditionally, the Białowieża Workshop is followed by a School on Geometry and Physics, for advanced graduate students and early-career researchers, and the book also includes extended abstracts of the lecture series.
This book collects papers based on the XXXVI Białowieża Workshop on Geometric Methods in Physics, 2017. The Workshop, which attracts a community of experts active at the crossroads of mathematics and physics, represents a major annual event in the field. Based on presentations given at the Workshop, the papers gathered here are previously unpublished, at the cutting edge of current research, and primarily grounded in geometry and analysis, with applications to classical and quantum physics. In addition, a Special Session was dedicated to S. Twareque Ali, a distinguished mathematical physicist at Concordia University, Montreal, who passed away in January 2016. For the past six years, the Białowieża Workshops have been complemented by a School on Geometry and Physics, comprising a series of advanced lectures for graduate students and early-career researchers. The extended abstracts of this year’s lecture series are also included here. The unique character of the Workshop-and-School series is due in part to the venue: a famous historical, cultural and environmental site in the Białowieża forest, a UNESCO World Heritage Centre in eastern Poland. Lectures are given in the Nature and Forest Museum, and local traditions are interwoven with the scientific activities.
To mark the continued success of the series, all hook s are again available in paperback. For a complete list of titles, please visit the Princeton University Press Web site: www.press.princeton.edu. The most recently published volumes include: Book jacket.