Download Free Facilities Location Under Uncertainty Book in PDF and EPUB Free Download. You can read online Facilities Location Under Uncertainty and write the review.

This comprehensive and clearly structured book presents essential information on modern Location Science. The book is divided into three parts: basic concepts, advanced concepts and applications. Written by the most respected specialists in the field and thoroughly reviewed by the editors, it first lays out the fundamental problems in Location Science and provides the reader with basic background information on location theory. Part II covers advanced models and concepts, broadening and expanding on the content presented in Part I. It provides the reader with important tools to help them understand and solve real-world location problems. Part III is dedicated to linking Location Science with other areas like GIS, telecommunications, healthcare, rapid transit networks, districting problems and disaster events, presenting a wide range of applications. This part enables the reader to understand the role of facility location in such areas, as well as to learn how to handle realistic location problems. The book is intended for researchers working on theory and applications involving location problems and models. It is also suitable as a textbook for graduate courses on facility location.
Location problems establish a set of facilities (resources) to minimize the cost of satisfying a set of demands (customers) with respect to a set of constraints. This book deals with location problems. It considers the relationship between location problems and other areas such as supply chains.
The comprehensive introduction to the art and science of locating facilities to make your organization more efficient, effective, and profitable. For the professional siting facilities, the task of translating organizational goals and objectives into concrete facilities requires a working familiarity with the theoretical and practical fundamentals of facility location planning and modeling. The first hands-on guide to using and developing facility location models, Network and Discrete Location offers a practiceoriented introduction to model-building methods and solution algorithms, complete with software to solve classical problems of realistic size and end-of-chapter exercises to enhance the reader's understanding. The text introduces the reader to the key classical location problems (covering, center, median, and fixed charge) which form the nucleus of facility location modeling. It also discusses real-life extensions of the basic models used in locating: production and distribution facilities, interacting services and facilities, and undesirable facilities. The book outlines a host of methodological tools for solving location models and provides insights into when each approach is useful and what information it provides. Designed to give readers a working familiarity with the basic facility location model types as well as an intuitive knowledge of the uses and limits of modeling techniques, Network and Discrete Location brings students and professionals alike swiftly from basic theory to technical fluency.
This book deals with an often-neglected feature of location problems, namely uncertainty, by combining two related fields: location theory and optimization. Written by leading researchers and practitioners in these fields, each chapter examines one aspect of the location process in different contexts, such as supply chains; location decisions under congestion; disaster management; design of resilient facilities; uncertainty in the health sector; and facility location in the retail sector under uncertainty. The book also addresses methodological aspects, such as chance-constrained approaches, heuristic algorithms, scenario approaches, and simulation. As such, it provides decision-makers with essential methods, tools and approaches to help them deal with these uncertainties. It is mainly intended for graduate students in the fields of operations research and logistics, as well as professionals in logistics and supply chain management.
The book covers both theory and applications of locational analysis (LocAn). The reader will see the power of LocAn models in various real-world contexts, varying from communication design to robotics and mail delivery. It is divided into two parts. The first part contains an overview of some of the LocAn methodologies. The second part describes in thorough detail some selected applications. The text provides researchers with an excellent and well thought-out review of available location models.
This book presents a structured approach to develop mathematical optimization formulations for several variants of facility layout. The range of layout problems covered includes row layouts, floor layouts, multi-floor layouts, and dynamic layouts. The optimization techniques used to formulate the problems are primarily mixed-integer linear programming, second-order conic programming, and semidefinite programming. The book also covers important practical considerations for solving the formulations. The breadth of approaches presented help the reader to learn how to formulate a variety of problems using mathematical optimization techniques. The book also illustrates the use of layout formulations in selected engineering applications, including manufacturing, building design, automotive, and hospital layout.
In a context of global competition, the optimization of logistics systems is inescapable. Logistics Systems: Design and Optimization falls within this perspective and presents twelve chapters that well illustrate the variety and the complexity of logistics activities. Each chapter is written by recognized researchers who have been commissioned to survey a specific topic or emerging area of logistics. The first chapter, by Riopel, Langevin, and Campbell, develops a framework for the entire book. It classifies logistics decisions and highlights the relevant linkages to logistics decisions. The intricacy of these linkages demonstrates how thoroughly the decisions are interrelated and underscores the complexity of managing logistics activities. Each of the chapters focus on quantitative methods for the design and optimization of logistics systems.
This book presents the proceedings of the conference and provides valuable insights into the issues facing Small and Medium Enterprises (SMEs), particularly in the areas of sustainable operations and digitalization. It comprises a series of papers presented at the conference, covering topics such as: challenges faced by SMEs in a post-pandemic era; digitalization and its impact on SMEs; sustainable operations in SMEs; international market performance improvement in SMEs; SMEs infrastructure and integration with research, development, and innovation institutions; and SMEs participation in business networks. The papers offer a unique perspective on the challenges and opportunities facing SMEs and provides practical solutions for those looking to help their organizations thrive in a rapidly changing business environment.
This open access book highlights the interdisciplinary aspects of logistics research. Featuring empirical, methodological, and practice-oriented articles, it addresses the modelling, planning, optimization and control of processes. Chiefly focusing on supply chains, logistics networks, production systems, and systems and facilities for material flows, the respective contributions combine research on classical supply chain management, digitalized business processes, production engineering, electrical engineering, computer science and mathematical optimization. To celebrate 25 years of interdisciplinary and collaborative research conducted at the Bremen Research Cluster for Dynamics in Logistics (LogDynamics), in this book hand-picked experts currently or formerly affiliated with the Cluster provide retrospectives, present cutting-edge research, and outline future research directions.