Download Free Facile Controlled Preparation Of Multifunctional Core Shell Magnetic Nanoparticles And Their Use In Microfluidic Separation Book in PDF and EPUB Free Download. You can read online Facile Controlled Preparation Of Multifunctional Core Shell Magnetic Nanoparticles And Their Use In Microfluidic Separation and write the review.

Continuous microfluidic technology has proven to be a potential competitor with established batch systems for facilitating chemical synthesis and purification, and more amenable to miniaturization, integration, and automation. Nevertheless, combining synthesis, purification and analysis remains a challenge due to the lack of development in efficient continuous flow purification techniques. An emerging continuous-flow purification technique is magnetophoresis, which utilizes surface-functionalized magnetic particles to selectively capture target molecules through specific binding, followed by manipulating the migration of particles through external magnetic force. This dissertation explores the synthesis of monodisperse core-shell functionalized magnetic nanoparticles composed of a single-core structure, and their application in magnetic manipulation for capture and isolation of targets in the continuous flow. First, single-cored magnetic nanoparticles with surface functionalities were prepared by coating functional triethoxysilanes onto iron oxide nanoparticles. The morphology, size, and colloidal stability of the resulting functionalized magnetic nanoparticles can be predicted and controlled. Second, a microfluidic device was fabricated from poly(dimethylsiloxane)(PDMS), consisting of two major components, a mixer and a separator (a diagram shown below). In the mixer, target molecules were captured by functionalized magnetic nanoparticles in a T-shape microchannel. Then the magnetic bead-target complex is directed into the separator, where the captured target molecules are magnetically steered out of the matrix while passing through a laminar co-flow profile. For proof of concept, we used a mixture of toluidine blue O (TBO) and sodium fluorescein as a model target and nontarget, respectively, and carboxyl functionalized magnetic beads as a receptor, leading to the selective complexation of TBO and magnetic beads via electrostatic binding. The device allowed for complete separation of the target from the nontarget molecules with high separation selectivity and efficiency as well as excellent reliability and flexibility.
Timely and comprehensive, this book presents recent advances in magnetic nanomaterials research, covering the latest developments, including the design and preparation of magnetic nanoparticles, their physical and chemical properties as well as their applications in different fields, including biomedicine, magnetic energy storage, wave-absorbing and water remediation. By allowing researchers to get to the forefront developments related to magnetic nanomaterials in various disciplines, this is invaluable reading for the nano, magnetic, energy, medical, and environmental communities.
In this special volume on polymer particles, recent trends and developments in the synthesis of nano- to micron-sized polymer particles by radical polymerization (Emulsion, Miniemulsion, Microemulsion, and Dispersion Polymerizations) of vinyl monomers in environmentally friendly heterogeneous aqueous and supercritical carbon dioxide fluid media are reviewed by prominent worldwide researchers. In addition to the important challenges and possibilities with regards to design and preparation of functionalized polymer particles of controlled size, the topics described are of great current interest due to the increased awareness of environmental issues.
Offering the latest information in magnetic nanoparticle (MNP) research, Magnetic Nanoparticles: From Fabrication to Clinical Applications provides a comprehensive review, from synthesis, characterization, and biofunctionalization to clinical applications of MNPs, including the diagnosis and treatment of cancers. This book, written by some of the most qualified experts in the field, not only fills a hole in the literature, but also bridges the gaps between all the different areas in this field. Translational research on tailored magnetic nanoparticles for biomedical applications spans a variety of disciplines, and putting together the most significant advances into a practical format is a challenging task. Balancing clinical applications with the underlying theory and foundational science behind these new discoveries, Magnetic Nanoparticles: From Fabrication to Clinical Applications supplies a toolbox of solutions and ideas for scientists in the field and for young researchers interested in magnetic nanoparticles.
Over the last decade, an unprecedented expansion in the field of nanomedicine has resulted in the development of new nanomaterials for diagnosis and therapy of various diseases such as cancer. This book covers the design, synthesis and applications of various functionally-hybridized nanomaterials for biomedical applications. It includes strategies for design and synthesis of hybrid nanomaterials, surface engineering of various nanoparticle-based hybrid nanosystems for cancer imaging and therapy, toxicity aspects of nanomaterials and the challenges in translation research of hybrid nanomaterials.
Magnetic Nanoparticles Learn how to make and use magnetic nanoparticles in energy research, electrical engineering, and medicine In Magnetic Nanoparticles: Synthesis, Characterization, and Applications, a team of distinguished engineers and chemists delivers an insightful overview of magnetic materials with a focus on nano-sized particles. The book reviews the foundational concepts of magnetism before moving on to the synthesis of various magnetic nanoparticles and the functionalization of nanoparticles that enables their use in specific applications. The authors also highlight characterization techniques and the characteristics of nanostructured magnetic materials, like superconducting quantum interference device (SQUID) magnetometry. Advanced applications of magnetic nanoparticles in energy research, engineering, and medicine are also discussed, and explicit derivations and explanations in non-technical language help readers from diverse backgrounds understand the concepts contained within. Readers will also find: A thorough introduction to magnetic materials, including the theory and fundamentals of magnetization In-depth explorations of the types and characteristics of soft and hard magnetic materials Comprehensive discussions of the synthesis of nanostructured magnetic materials, including the importance of various preparation methods Expansive treatments of the surface modification of magnetic nanoparticles, including the technical resources employed in the process Perfect for materials scientists, applied physicists, and measurement and control engineers, Magnetic Nanoparticles: Synthesis, Characterization, and Applications will also earn a place in the libraries of inorganic chemists.
The book focuses on microfluidics with applications in nanotechnology. The first part summarizes the recent advances and achievements in the field of microfluidic technology, with emphasize on the the influence of nanotechnology. The second part introduces various applications of microfluidics in nanotechnology, such as drug delivery, tissue engineering and biomedical diagnosis.
Magnetic nanoparticles have been attracting much interest in the fields of advanced biological and medical applications such as drug delivery, magnetic resonance imaging, and array-based assaying as well as in the fields of separation science. This book presents current research in the study of the properties, synthesis and applications of magnetic nanoparticles. Topics include the synthesis of organic based magnetic nanoparticles-polymers and calixarene based magnetic nanoparticles; ferromagnetism in carbon and boron nitride nanostructures; and computer simulations, chemical syntheses and biomedical diagnosis using magnetic nanoparticles.