Download Free Fabrication Of Superconducting Nanowire Single Proton Detectors Book in PDF and EPUB Free Download. You can read online Fabrication Of Superconducting Nanowire Single Proton Detectors and write the review.

The future NASA Mars project will need an ultra-fast, highly sensitive photodetector to increase the bandwidth of free-space long-range communication, which is now done primarily using RF signals. Our original motivation in fabricating superconducting nanowire single-photon detectors (SN-SPD) is to fulfill this need. The SN-SPD's reported GHz counting rates [1] make it very attractive for this application. A new fabrication process for making SN-SPDs using hydrogen-silsesqioxane (HSQ), a high-resolution electron-beam lithography resist will be presented. An electron-beam proximity-effect correction program was developed to achieve nanowires with uniform linewidths, which is important for device performance. Finally, we present initial test results that show device functionality and performance. Our best device has a detection efficiency of [approx.] 10 % at 1064 nm photon wavelength at 2.1 K and a photon-induced voltage-pulse duration of [approx.] 3 ns.
This work presents three advances to scale SNSPDs from few-pixel devices to large detector arrays: atomic layer deposition for the fabrication of uniform superconducting niobium nitride films of few-nanometer thickness, a frequency-multiplexing scheme to operate multiple detectors with a reduced number of lines, and the integration of SNSPDs with free-form polymer structures to achieve efficient optical coupling onto the active area of the detectors.
Superconducting nanowire detectors are a very prominent technology in fields that require single-photon detection with very high efficiency, such as quantum computing and communication or nanophotonics. Their high detection rates and unsurpassed timing precision would also make them ideal candidates for detector technology in other fields, such as nuclear and high energy physics. Typical collider experiments, however, operate in much more extreme conditions than most quantum optics setups. One of the main roadblocks for transforming superconducting nanowire photon detectors into superconducting nanowire particle detectors was the question of their performance in strong magnetic fields. In this work, I present the results of developing a novel thin film deposition method called Ion Beam Assisted Sputtering, which allowed me to grow superconducting Niobium Nitride films with upper critical fields as high as 32 T and study their microstructural and electromagnetic properties. As the nanowires are detectors with extremely small sizes, I also explore the nature of the suppression of the superconducting state in ultra-thin films. I propose two possible explanations for this phenomenon, one based on confinement of the BCS condensate, and the other on weak localization and competition between two strongly correlated electronic phases. Finally, I use this technology to fabricate superconducting nanowire single photon detectors capable of detection in fields as high as 5 T, currently the highest field at which nanowire detectors are known to operate. This result demonstrates the potential viability of the technology for nuclear and high energy physics, and is an important stepping stone to developing novel particle detectors.
Superconducting detectors offer unparalleled means of making astronomical/cosmological observations. Fabrication of these detectors is somewhat unconventional; however, a lot of novel condensed matter physics/materials scientific discoveries and semiconductor fabrication processes can be generated in making these devices.
The Superconducting Nanowire single-photon detector (SNSPD) made with niobium-titanium nitride (NbTiN) thin films fabricated on oxidized silicon substrates are highly promising nanodevices. The SNSPD is an immensely capable infrared single photon detector. When cooled down with liquid helium the device exhibits high detection efficiency, low dark-counts in spite of fast response times, and low timing jitter. For good single-photon sensitivity at telecom wavelengths, picosecod timing resolutions (
Systems, articles, and methods are provided related to nanowire-based detectors, which can be used for light detection in, for example, single-photon detectors. In one aspect, a variety of detectors are provided, for example one including an electrically superconductive nanowire or nanowires constructed and arranged to interact with photons to produce a detectable signal. In another aspect, fabrication methods are provided, including techniques to precisely reproduce patterns in subsequently formed layers of material using a relatively small number of fabrication steps. By precisely reproducing patterns in multiple material layers, one can form electrically insulating materials and electrically conductive materials in shapes such that incoming photons are redirected toward a nearby electrically superconductive materials (e.g., electrically superconductive nanowire(s)). For example, one or more resonance structures (e.g., comprising an electrically insulating material), which can trap electromagnetic radiation within its boundaries, can be positioned proximate the nanowire(s). The resonance structure can include, at its boundaries, electrically conductive material positioned proximate the electrically superconductive nanowire such that light that would otherwise be transmitted through the sensor is redirected toward the nanowire(s) and detected. In addition, electrically conductive material can be positioned proximate the electrically superconductive nanowire (e.g. at the aperture of the resonant structure), such that light is directed by scattering from this structure into the nanowire.
This comprehensive handbook gives a fully updated guide to lasers and laser technologies, including the complete range of their technical applications. This forth volume covers laser applications in the medical, metrology and communications fields. Key Features: • Offers a complete update of the original, bestselling work, including many brand-new chapters. • Deepens the introduction to fundamentals, from laser design and fabrication to host matrices for solid-state lasers, energy level diagrams, hosting materials, dopant energy levels, and lasers based on nonlinear effects. • Covers new laser types, including quantum cascade lasers, silicon-based lasers, titanium sapphire lasers, terahertz lasers, bismuth-doped fiber lasers, and diode-pumped alkali lasers. • Discusses the latest applications, e.g., lasers in microscopy, high-speed imaging, attosecond metrology, 3D printing, optical atomic clocks, time-resolved spectroscopy, polarization and profile measurements, pulse measurements, and laser-induced fluorescence detection. • Adds new sections on laser materials processing, laser spectroscopy, lasers in imaging, lasers in environmental sciences, and lasers in communications. This handbook is the ideal companion for scientists, engineers, and students working with lasers, including those in optics, electrical engineering, physics, chemistry, biomedicine, and other relevant areas.
This book describes the fundamentals of particle detectors as well as their applications. Detector development is an important part of nuclear, particle and astroparticle physics, and through its applications in radiation imaging, it paves the way for advancements in the biomedical and materials sciences. Knowledge in detector physics is one of the required skills of an experimental physicist in these fields. The breadth of knowledge required for detector development comprises many areas of physics and technology, starting from interactions of particles with matter, gas- and solid-state physics, over charge transport and signal development, to elements of microelectronics. The book's aim is to describe the fundamentals of detectors and their different variants and implementations as clearly as possible and as deeply as needed for a thorough understanding. While this comprehensive opus contains all the materials taught in experimental particle physics lectures or modules addressing detector physics at the Master's level, it also goes well beyond these basic requirements. This is an essential text for students who want to deepen their knowledge in this field. It is also a highly useful guide for lecturers and scientists looking for a starting point for detector development work.