Download Free Fabrication Of Single Nanowire Device Using Electron Beam Lithography Book in PDF and EPUB Free Download. You can read online Fabrication Of Single Nanowire Device Using Electron Beam Lithography and write the review.

One dimensional nanostructure materials such as nanowires have drawn many interests among the scientific community for a wide range of applications such as field-effect transistors [1], [2], inverters[3], light-emitting diode [1], lasers [4], nanosensors [5], [6], and photodetectors [7]... Comparing with the characterization of nanowire arrays, characterizing a single nanowire will definitely provide a better understanding on new nanowire properties due to simplified behaviors of devices. Although promising theories could be drawn from those results, fabrication of test structure for single nanowire measurements cannot be easily processed using standard microfabrication techniques. Therefore, electron beam lithography integrated with photolithography technique has been used to manipulate the connection; which provides I-V characteristics, of single horizontal nanowire with a specific device. Single Si nanowire characterization could be extended to various materials for further studies. In addition to single horizontal nanowire device, single vertical nanowire structure has been fabricated. Electron beam lithography technique is mainly used to pattern well-defined nanostructures where single ZnO nanowire is grown. Optical measurement, photoluminescence, is conducted to verify ZnO nanowires. This thesis also emphasizes on fabrication process to pattern various structures such as lines, rings, and circles with different sizes from 1um to sub 100nm... They could be potential candidate to create nanodisk antenna (rings), fishnet structure (lines), and base to grown single nanowire (circle).
This Ph. D. thesis addresses nanostructure fabrication techniques based on electron beam lithography and their application to: the creation of ultra-fast metal-semiconductor-metal photodetectors and quantum effect transistors, the investigation of light emission from silicon, and the enhancement of resolution in magnetic force microscopy. Specifically, this thesis covers the following topics. (1) The implementation and characterization of an ultra-high resolution electron beam lithography (EBL) system created by modifying a scanning electron microscope. (2) The exploration of minimum achievable feature sizes using ultra-high resolution EBL and a lift-off process with polymethyl-methacrylate resists. 10 nm features, which are among the smallest ever achieved using EBL, have been obtained using a double shadow evaporation technique, a ultra-high resolution EBL technique, and a technique utilizing EBL, reactive ion etching, and subsequent wet etching. (3) The application of ultra-high resolution EBL technology to the fabrication of ultra-fast metal-semiconductor-metal (MSM) photodetectors. The fastest response time reported to date has been achieved in this project. (4) The fabrication and characterization of modulation doped field effect transistors. Quantum effects have been observed in a point contact device. (5) The fabrication of sub-50 nm Si structures using EBL, reactive ion etching (RIE) and subsequent wet etching for the study of photoluminescence (PL) from Si. PL has been observed from an array of 20 nm diameter pillars. And finally, (6) the application of high resolution EBL to the study of magnetic materials. Single domain magnetic particles and novel MFM tips have been fabricated.
By Vikrant Agnihotri.
This book reviews research on single-electron devices and circuits in silicon. These devices provide a means to control electronic charge at the one-electron level and are promising systems for the development of few-electron, nanoscale electronic circuits. The book considers the design, fabrication, and characterization of single-electron transistors, single-electron memories, few-electron transfer devices such as electron pumps and turnstiles, and single-electron logic devices. A review of the many different approaches used for the experimental realisation of these devices is provided and devices developed during the author''s own research are used as detailed examples. An introduction to the physics of single-electron charging effects is included. Sample Chapter(s). Chapter 1: Introduction (301 KB). Contents: Introduction; Single-Electron Charging Effects; Single-Electron Transistors in Silicon; Single-Electron Memory; Few-Electron Transfer Devices; Single-Electron Logic Circuits. Readership: Researchers, academics, and postgraduate students in nanoelectronics, nanofabrication, nanomaterials and nanostructures, quantum physics and electrical & electronic engineering.
Intended to update scientists and engineers on the current state of the art in a variety of key techniques used extensively in the fabrication of structures at the nanoscale. The present work covers the essential technologies for creating sub 25 nm features lithographically, depositing layers with nanometer control, and etching patterns and structures at the nanoscale. A distinguishing feature of this book is a focus not on extension of microelectronics fabrication, but rather on techniques applicable for building NEMS, biosensors, nanomaterials, photonic crystals, and other novel devices and structures that will revolutionize society in the coming years.
Nanoimprint Lithography: An enabling process for nanofabrication presents a comprehensive description of nanotechnology that is one of the most promising low-cost, high-throughput technologies for manufacturing nanostructures, and an emerging lithography candidates for 22, 16 and 11 nm nodes. It provides the exciting, multidisciplinary field, offering a wide range of topics covering: principles, process, material and application. This book would be of specific interest for researchers and graduate students in the field of nanoscience, nanotechnology and nanofabrication, material, physical, chemical, electric engineering and biology. Dr. Weimin Zhou is an associate professor at Shanghai Nanotechnology Promotion Center, China.
This potentially unique work offers various approaches on the implementation of nanowires. As it is widely known, nanotechnology presents the control of matter at the nanoscale and nanodimensions within few nanometers, whereas this exclusive phenomenon enables us to determine novel applications. This book presents an overview of recent and current nanowire application and implementation research worldwide. We examine methods of nanowire synthesis, types of materials used, and applications associated with nanowire research. Wide surveys of global activities in nanowire research are presented, as well.
This book presents the fabrication of optoelectronic nanodevices. The structures considered are nanowires, nanorods, hybrid semiconductor nanostructures, wide bandgap nanostructures for visible light emitters and graphene. The device applications of these structures are broadly explained. The book deals also with the characterization of semiconductor nanostructures. It appeals to researchers and graduate students.
The future NASA Mars project will need an ultra-fast, highly sensitive photodetector to increase the bandwidth of free-space long-range communication, which is now done primarily using RF signals. Our original motivation in fabricating superconducting nanowire single-photon detectors (SN-SPD) is to fulfill this need. The SN-SPD's reported GHz counting rates [1] make it very attractive for this application. A new fabrication process for making SN-SPDs using hydrogen-silsesqioxane (HSQ), a high-resolution electron-beam lithography resist will be presented. An electron-beam proximity-effect correction program was developed to achieve nanowires with uniform linewidths, which is important for device performance. Finally, we present initial test results that show device functionality and performance. Our best device has a detection efficiency of [approx.] 10 % at 1064 nm photon wavelength at 2.1 K and a photon-induced voltage-pulse duration of [approx.] 3 ns.