Download Free Fabrication And Optical Characterization Of Metamaterials And Nano Antennas Book in PDF and EPUB Free Download. You can read online Fabrication And Optical Characterization Of Metamaterials And Nano Antennas and write the review.

From science fiction to science laboratoriesDiscover the State of the Art in Photonic MetamaterialsMetamaterials-composite media with unusual optical properties-have revolutionized the landscape of optical science and engineering over the past decades. Metamaterials have transformed science-fiction-like concepts of superresolution imaging and optic
This book presents cutting-edge research advances in the rapidly growing areas of nanoantennas and plasmonics as well as their related enabling technologies and applications. It provides a comprehensive treatment of the field on subjects ranging from fundamental theoretical principles and new technological developments, to state-of-the-art device design, as well as examples encompassing a wide range of related sub-areas. The content of the book also covers highly-directive nanoantennas, all-dielectric and tuneable/reconfigurable devices, metasurface optical components, and other related topics.
This consistent and systematic review of recent advances in optical antenna theory and practice brings together leading experts in the fields of electrical engineering, nano-optics and nano-photonics, physical chemistry and nanofabrication. Fundamental concepts and functionalities relevant to optical antennas are explained, together with key principles for optical antenna modelling, design and characterisation. Recognising the tremendous potential of this technology, practical applications are also outlined. Presenting a clear translation of the concepts of radio antenna design, near-field optics and field-enhanced spectroscopy into optical antennas, this interdisciplinary book is an indispensable resource for researchers and graduate students in engineering, optics and photonics, physics and chemistry.
As optical counterpart of microwave antennas, optical nano-antennas are important devices for converting propagating radiation into confined/enhanced fields at nanoscale. The recent advances in resonant sub-wavelength optical antennas have now offered researchers a continuum of electromagnetic spectrum0́4from radio frequencies all the way up to X-rays0́4to design, analyze and predict new phenomena that were previously unknown. Their applications in areas with pressing needs, e.g., in sensing, imaging, energy harvesting, and disease cure and prevention, have brought revolutionary improvements. This dissertation investigates important characteristics of these plasmonic resonators through optical and electron-beam excitation using nanostructures defined by lithography as well as a newly developed direct metal patterning technique. The important challenges in optical antenna research include both fundamental understanding of the underlying physics as well as issues related to fabrication of low cost, high throughput nanostructures beyond the diffraction limit. The nanoscale feature size of optical antennas limits our ability to design, manufacture, and characterize their resonant behavior. In this regard, I demonstrate how electron-beam lithography can be coupled with a new solid-state electrochemical process to directly pattern metal nanostructures with possibility of sub-10 nm features at low cost, minimal infrastructure, and ambient conditions. Using bowtie antennas as representative of the general class of optical nano-antennas, I show how optical imaging can be used as a simple tool to characterize their resonant behavior. Further understanding of their spatial and spectral modes is gathered using finite-difference time domain simulations. The extremely high fields generated in gaps of closely coupled bowties are used in non-linear signal generation and several sum-frequency phenomena are identified. The sub-wavelength confinement of fields in optical antennas requires new techniques that can image beyond diffraction limited optical imaging. One such technique, cathodoluminescence (CL) imaging spectroscopy, which has been demonstrated to resolve sub-25 nm antenna modes, is used to map various modes of triangular and bowtie antennas. The highly localized electron-beam in CL is used to excite and map the hybridized modes of bowtie dimers, including anti-parallel 0́−dark0́+ modes. These high quality dark modes are critical for overcoming the fundamental limitations associated with wideband resonances in plasmonic resonators. Finally, I discuss the role of CL in characterizing metal nano-disks which show multiple modes and have sizes comparable to their resonance wavelengths. CL provides a unique opportunity to map the enhanced fields from interference of surface plasmons sustained on the disks. The understanding of these modes is critical for the application of resonant metal cavities for the next generation of optical devices including nano-lasers.
The contributions in this volume were presented at a NATO Advanced Study Institute held in Erice, Italy, 4-19 July 2013. Many aspects of important research into nanophotonics, plasmonics, semiconductor materials and devices, instrumentation for bio sensing to name just a few, are covered in depth in this volume. The growing connection between optics and electronics, due to the increasing important role plaid by semiconductor materials and devices, find their expression in the term photonics, which also reflects the importance of the photon aspect of light in the description of the performance of several optical systems. Nano-structures have unique capabilities that allow the enhanced performance of processes of interest in optical and photonic devices. In particular these structures permit the nanoscale manipulation of photons, electrons and atoms; they represent a very hot topic of research and are relevant to many devices and applications. The various subjects bridge over the disciplines of physics, biology and chemistry, making this volume of interest to people working in these fields. The emphasis is on the principles behind each technique and on examining the full potential of each technique.
This book is a collection of the works of leading experts worldwide in the rapidly developing fields of plasmonics and metamaterials. These developments are promising to revolutionize ways of generating, controlling and processing light in the nanoscale. The technological applications range from nano-lasers to optical nano-waveguides to artificial media with unusual and exotic optical properties unattainable in natural materials. The volume cuts across all relevant disciplines and covers experiments, measurements, fabrication, physical and mathematical analysis, as well as computer simulation.
This book investigates the nonlinear optical applications by using stripe and rod shaped resonant photonic nanoantennas on chalcogenide glasses. This work includes theoretical background about how nanoantennas focus light on a substrate and mentions on nonlinear interaction of focused light with chalcogenide glass. It explains how to design a nanoantenna to focus light on a specified substrate by engineering shape and size of the antenna according to refractive indexes of the antenna and the substrate material. Details of design and simulation parameters are also given. Not only design of the antenna, but also fabrication and characterization of the photonic nanoantennas are explained in the work. It includes different nano fabrication techniques with detailed step by step explanation to place nanoantennas on the desired substrate. Moreover the work includes information about characterization techniques and example characterization results of nanoantennas which are fabricated with different techniques.
This book shows an update in the field of micro/nano fabrications techniques of two and three dimensional structures as well as ultimate three dimensional characterization methods from the atom range to the micro scale. Several examples are presented showing their direct application in different technological fields such as microfluidics, photonics, biotechnology and aerospace engineering, between others. The effects of the microstructure and topography on the macroscopic properties of the studied materials are discussed, together with a detailed review of 3D imaging techniques.