Download Free Fabrication And Characterization Of Zinc Oxide Zno Nanostructures Book in PDF and EPUB Free Download. You can read online Fabrication And Characterization Of Zinc Oxide Zno Nanostructures and write the review.

Nanostructured Zinc Oxide covers the various routes for the synthesis of different types of nanostructured zinc oxide including; 1D (nanorods, nanowires etc.), 2D and 3D (nanosheets, nanoparticles, nanospheres etc.). This comprehensive overview provides readers with a clear understanding of the various parameters controlling morphologies. The book also reviews key properties of ZnO including optical, electronic, thermal, piezoelectric and surface properties and techniques in order to tailor key properties. There is a large emphasis in the book on ZnO nanostructures and their role in optoelectronics. ZnO is very interesting and widely investigated material for a number of applications. This book presents up-to-date information about the ZnO nanostructures-based applications such as gas sensing, pH sensing, photocatalysis, antibacterial activity, drug delivery, and electrodes for optoelectronics. - Reviews methods to synthesize, tailor, and characterize 1D, 2D, and 3D zinc oxide nanostructured materials - Discusses key properties of zinc oxide nanostructured materials including optical, electronic, thermal, piezoelectric, and surface properties - Addresses most relevant zinc oxide applications in optoelectronics such as light-emitting diodes, solar cells, and sensors
This book is a printed edition of the Special Issue "Zinc Oxide Nanostructures: Synthesis and Characterization" that was published in Materials
The book deals with novel aspects and perspectives in metal oxide and hybrid material fabrication. The contributions are mainly focused on the search for a new group of advanced materials with designed physicochemical properties, especially an expanded porous structure and defined surface activity. The proposed technological procedures result in an enhanced activity of the synthesized hybrid materials, which is of great importance when considering their potential fields of application. The use of such materials in different technological disciplines, including aspects associated with environmental protection, allows for the verification of the proposed synthesis method. Thus, it can be stated that those aspects are of interdisciplinary character and may be located at the interface of three scientific disciplines—chemistry, materials science, and engineering—as well as environmental protection. Furthermore, the presented scientific scope is in some way an answer to the continuous demand for such types of materials and opens new perspectives for their practical use
Zinc oxide (ZnO) in its nanostructured form is emerging as a promising material with great potential for the development of many smart electronic devices. This book presents up-to-date information about various synthesis methods to obtain device-quality ZnO nanostructures. It describes both high-temperature (over 100 C) and low-temperature (under
Heterogeneous photocatalysis is a novel technique for water purification. Publications on photocatalysis span a relatively recent period of not more than 25 years. This is a technique that, according to our extensive experience on the development of laboratory scale and pilot plant units, has great promise to eliminate water and air pollutants. Photocatalysis offers much more than competitive techniques where pollutants are transferred from phases; photocatalysis can achieve complete mineralization of pollutants leaving non-toxic species such as CO2 and H2O and can be exploited at close to room temperature and ambient pressure.
Zinc-Based Nanostructures for Environmental and Agricultural Applications shows how zinc nanostructures are being used in agriculture, food and the environment. The book has been divided into two parts: Part I deals with the synthesis and characterization of zinc-based nanostructures such as biogenic, plant, microbial, and actinobacteria mediated synthesis of zinc nanoparticles, Part II is focused on agri-food applications such as antibacterial, antifungal, antimicrobial, plant disease management, controlling post-harvest diseases, pesticide sensing and degradations, plant promotions, ZnO nanostructure for food packaging application, safe animal food and feed supplement, elimination of mycotoxins, and veterinary applications. Part III reviews technological developments in environmental applications such as risks and benefits for aquatic organisms and the marine environment, antiseptic activity and toxicity mechanisms, wastewater treatment, and zinc oxide-based nanomaterials for photocatalytic degradation of environmental and agricultural pollutants. The book discusses various aspects, including the application of zinc-based nanostructures to enhance plant health and growth, the effect on soil microbial activity, antimicrobial mechanism, phytotoxicity and accumulation in plants, the possible impact of zinc-based nanostructures in the agricultural sector as nanofertilizer, enhancing crop productivity, and other possible antimicrobial mechanisms of ZnO nanomaterials. - Explores the impact of a large variety of zinc-based nanostructures on agri-food and environment sectors - Outlines how the properties of zinc-based nanostructures mean they are particularly efficient in environmental and agricultural application areas - Assesses the major challenges of synthesizing and processing zinc-based nanostructured materials
This first systematic, authoritative and thorough treatment in one comprehensive volume presents the fundamentals and technologies of the topic, elucidating all aspects of ZnO materials and devices. Following an introduction, the authors look at the general properties of ZnO, as well as its growth, optical processes, doping and ZnO-based dilute magnetic semiconductors. Concluding sections treat bandgap engineering, processing and ZnO nanostructures and nanodevices. Of interest to device engineers, physicists, and semiconductor and solid state scientists in general.
As wide band semiconductors with rich morphologies and interesting electric, optical, mechanical and piezoelectric properties, ZnO nanostructures have great potential in applications, such as strain sensors, UV detectors, blue LED, nano generators, and biosensors. ZnO Nanostructures: Fabrication and Applications covers the controllable synthesis and property optimization of ZnO nanostructures through to the preparation and performance of nanodevices for various applications. The book also includes recent progress in property modulation of ZnO nanomaterials and new types of devices as well as the latest research on self-powered devices and performance modulation of ZnO nanodevices by multi-field coupled effects. Authored by a leading researcher working within the field, this volume is applicable for those working in nanostructure fabrication and device application in industry and academia and is appropriate from advanced undergraduate level upwards.
This book focuses on the applications of nanomaterials in the fabrication of gas sensors. It covers recent developments of different materials used to design gas sensors, such as conducting polymers, semiconductors, as well as layered and nanosized materials. The widespread applications of various gas sensors for the detection of toxic gases are also discussed. The book provides a concise but thorough coverage of nanomaterials applications and utilization in gas sensors. In addition, it overviews recent developments in and the fabrication of gas sensors and their attributes for a broad audience, including beginners, graduate students, and specialists in both academic and industrial sectors.
Zinc oxide (ZnO) is an n-type semiconductor with versatile applications such as optical devices in ultraviolet region, piezoelectric transducers, transparent electrode for solar cells and gas sensors. This book "ZnO Thin Films: Properties, Performance and Applications" gives a deep insight in the intriguing science of zinc oxide thin films. It is devoted to cover the most recent advances and reviews the state of the art of ZnO thin films applications involving energy harvesting, microelectronics, magnetic devices, photocatalysis, photovoltaics, optics, thermoelectricity, piezoelectricity, electrochemistry, temperature sensing. It serves as a fundamental information source on the techniques and methodologies involved in zinc oxide thin films growth, characterization, post-deposition plasma treatments and device processing. This book will be invaluable to the experts to consolidate their knowledge and provide insight and inspiration to beginners wishing to learn about zinc oxide thin films.