Download Free Fabrication And Characterization Of Vertical Silicon Nanowire Arrays Book in PDF and EPUB Free Download. You can read online Fabrication And Characterization Of Vertical Silicon Nanowire Arrays and write the review.

Thermoelectric devices, which convert temperature gradients into electricity, have the potential to harness waste heat to improve overall energy efficiency. However, current thermoelectric devices are not cost-effective for most applications due to their low efficiencies and high material costs. To improve the overall conversion efficiency, thermoelectric materials should possess material properties that closely resemble a "phonon glass" and an "electron crystal". The desired low thermal and high electrical conductivities allow the thermoelectric device to maintain a high temperature gradient while effectively transporting current. Unfortunately, thermal transport and electrical transport are a closely coupled phenomena and it is difficult to independently engineer each specific conduction mechanism in conventional materials. One strategy to realize this is to generate nanostructured silicon (e.g. silicon nanowires (SiNWs)), which have been shown to reduce thermal conductivity ([kappa]) through enhanced phonon scattering while theoretically preserving the electronic properties; therefore, improving the overall device efficiency. The ability to suppress phonon propagation in nanostructured silicon, which has a bulk phonon mean free path ~ 300 nm at 300 K, has raised substantial interest as an ultra-low [kappa] material capable of reducing the thermal conductivity up to three orders of magnitude lower than that of bulk silicon. While the formation of porous silicon and SiNWs has individually been demonstrated as promising methods to reduce [kappa], there is a lack of research investigating the thermal conductivity in SiNWs containing porosity. We fabricated SiNW arrays using top-down etching methods (deep reactive ion etching and metal-assisted chemical etching) and by tuning the diameter with different patterning methods and tuning the internal porosity with different SiNW etching conditions. The effects of both the porosity and the SiNW dimensions at the array scale are investigated by measuring [kappa] of vertical SiNW arrays using a nanosecond time-domain thermoreflectance technique. In addition to thermoelectric devices, vertical SiNW arrays, due to their anisotropic electronic and optical properties, large surface to volume ratios, resistance to Li-ion pulverization, ability to orthogonalize light absorption and carrier transport directions, and trap light, make vertical SiNW arrays important building blocks for various applications. These may include sensors, solar cells, and Li-ion batteries. Many of these applications benefit from vertical SiNW arrays fabricated on non-silicon based substrates which endow the final devices with the properties of flexibility, transparency, and light-weight while removing any performance limitation of the silicon fabrication substrate. We then developed two vertical transfer printing methods (V-TPMs) that are used to detach SiNW arrays from their original fabrication substrates and subsequently attach them to any desired substrate while retaining their vertical alignment over a large area. The transfer of vertically aligned arrays of uniform length SiNWs is desirable to remove the electrical, thermal, optical, and structural impact from the fabrication substrate and also to enable the integration of vertical SiNWs directly into flexible and conductive substrates. Moreover, realization of a thermoelectric device requires the formation of electrical contacts on both sides of the SiNW arrays. We formed metallic contacts on both ends of the SiNW arrays with a mechanical supporting and electrical insulating polymer in between. Electrical characterization of the SiNW devices exhibited good current-voltage (I-V) characteristics independent of substrates materials and bending conditions. We believe the V-TPMs developed in this work have great potential for manufacturing practical thermoelectric devices as well as high performing, scalable SiNW array devices on flexible and conducting substrates.
Xii, 63 leaves : ill. ; 30 cm.
In its second, extensively revised second edition, Semiconducting Silicon Nanowires for Biomedical Applications reviews the fabrication, properties, and biomedical applications of this key material. The book begins by reviewing the basics of growth, characterization, biocompatibility, and surface modification of semiconducting silicon nanowires. Attention then turns to use of these structures for tissue engineering and delivery applications, followed by detection and sensing. Reflecting the evolution of this multidisciplinary subject, several new key topics are highlighted, including our understanding of the cell-nanowire interface, latest advances in associated morphologies (including silicon nanoneedles and nanotubes for therapeutic delivery), and significantly, the status of silicon nanowire commercialization in biotechnology. Semiconducting Silicon Nanowires for Biomedical Applications is a comprehensive resource for biomaterials scientists who are focused on biosensors, drug delivery, and the next generation of nano-biotech platforms that require a detailed understanding of the cell-nanowire interface, along with researchers and developers in industry and academia who are concerned with nanoscale biomaterials, in particular electronically-responsive structures. Reviews the growth, characterization, biocompatibility, and surface modification of semiconducting silicon nanowires Describes silicon nanowires for tissue engineering and delivery applications, including cellular binding & internalization, tissue engineering scaffolds, mediated differentiation of stem cells, and silicon nanoneedles & nanotubes for delivery of small molecule / biologic-based therapeutics Highlights the use of silicon nanowires for detection and sensing Presents a detailed description of our current understanding of the cell-nanowire interface Covers the current status of commercial development of silicon nanowire-based platforms
Covering technological aspects as well as the suitability and applicability of various kinds of uses, this handbook shows optimization strategies, techniques and assembly pathways to achieve the combination of complex, even three-dimensional structures with simple manufacturing steps. The authors provide information on markets, commercialization opportunities and aspects of mass or large-scale production as well as design tools, experimental techniques, novel materials, and ideas for future improvements. Not only do they weigh up cost versus quantity, they also consider CMOS and LIGA strategies. Of interest to physicists, electronics engineers, materials scientists, institutional and industrial libraries as well as graduate students of the relevant disciplines.
When dimensions of material approach nanoscale, they often reveal startling properties. These unique properties when compared to bulk material make them interesting candidates for new technologies. In a race to sustain Moore's Law, silicon nanowires which possess remarkable properties diverse from bulk-silicon have gained notable attention. With advancement in technology engineers have mastered the art of fabrication of nanowires, but there exists a big gap in understanding various phenomena at this scale. The aim of this work is to bridge the gap and give an insight into some interesting properties and application of silicon nanowires. Using top-down lithography Silicon nanowires are fabricated and various mechanical and electrical properties are studied. The use of functionalized silicon nanowires for gas detection is demonstrated with very large sensitivity and detection window reported for the first time.
Nanoscale materials are showing great promise in various electronic, optoelectronic, and energy applications. Silicon (Si) has especially captured great attention as the leading material for microelectronic and nanoscale device applications. Recently, various silicides have garnered special attention for their pivotal role in Si device engineering