Download Free Fabrication And Characterization Of Graphite Oxide Based Field Effect Transistors For Non Enzymatic Glucose Sensor Application Book in PDF and EPUB Free Download. You can read online Fabrication And Characterization Of Graphite Oxide Based Field Effect Transistors For Non Enzymatic Glucose Sensor Application and write the review.

The sixth volume in a series of handbooks on graphene research and applications The Handbook of Graphene, Volume 6: Biosensors and Advanced Sensors discusses the unique benefits that the discovery of graphene has brought to the sensing and biosensing sectors. It examines graphene's use in leading-edge technology applications and the development of a variety of graphene-based sensors. The handbook looks at how graphene can be used as an electrode, substrate, or transducer in sensor design. Graphene-based sensor detection has achieved up to femto-levels, with performances delivering the advantages of greater selectivity, sensitivity, and stability.
This book provides an overview of electronic and optical properties of graphite-related systems. It presents a well-developed and up-to-date theoretical model and addresses important advances in essential properties and diverse quantization phenomena. Key features include various Hamiltonian models, dimension-enriched carbon-related systems, complete and unusual results, detailed comparisons with the experimental measurements, clear physical pictures, and further generalizations to other emergent 2D materials. It also covers potential applications, such as touch-screen panel devices, FETs, supercapacitors, sensors, LEDs, solar cells, photodetectors, and photomodulators.
Graphene-based nanocomposites are very useful in detecting toxic chemicals such as heavy metals, inorganic anions, phenolic compounds, pesticides, and chemical warfare agents. The book presents recent progress on relevant topics: Toxicity of chemicals, importance of electrochemical sensors, different types of graphene-based nanomaterials, Neurotoxins and electroanalytical detection of toxic chemicals. Keywords: Graphene-based Nanocomposites, Electrochemical Sensors, Toxic Chemicals, Sensors for Toxic Molecules, Graphene-Metal Oxides, Graphene-Metal Chalcogenides, Graphene-Polymer Nanocomposites, Graphene-Carbon Nanotubes, Graphene-Carbon Nitrides, Graphene-MOF Composites, Heavy Metals, Phenolic Compounds, Pesticides, Chemical Warfare Agents.
The fifth volume in a series of handbooks on graphene research and applications Graphene is a valuable nanomaterial used in technology. The Handbook of Graphene: Graphene in Energy, Healthcare, and Environmental Applications is the fifth volume in the handbook series. The book's topics include: graphene nanomaterials in energy and environment applications and graphene used as nanolubricant. Within the handbook, three-dimensional graphene materials are discussed, as are synthesis and applications in electrocatalysts and electrochemical sensors. The battery topics cover: graphene and graphene-based hybrid composites for advanced rechargeable battery electrodes; graphene-based materials for advanced lithium-ion batteries; graphene-based materials for supercapacitors and conductive additives of lithium ion batteries. The book's graphene-based sensor information addresses flexible actuators, sensors, and supercapacitors.
This book focuses on both recent advances and the applications of two-dimensional (2D) nanomaterials in different fields. This book encapsulates all the aspects related to 2D nanomaterials and their applications. It provides scientific and technological insights on novel routes of design and fabrication of few layered nanostructures and their hetero structures based on a variety of 2-D layered materials. It also covers a wide range of industrial applications of 2D nanomaterials. It emphasizes on the detailing of the various characterization techniques used. The book will be a valuable reference for beginners, researchers, and professionals interested in nano-materials and allied fields.
Advances in Nanostructures: Processing and Methodology to Grow Nanostructures provides readers with the most appropriate nanostructuring methods used for obtaining nanoparticles with specific requirements suitable for different applications, taking into consideration characteristics such as dimension and shape. The different methods used to synthesize nanomaterials are thoroughly discussed, along nanomaterials' properties and characterization techniques reviewed. Chapters on advanced nanostructures' applications provide in-depth knowledge on applications of these nanostructures in interdisciplinary fields, such as energy, environment, and healthcare areas. - Discusses various physical and chemical methods of preparing nanomaterials - Presents some of the most important techniques for the characterization of nanostructures and nanoparticles - Features applications of nanostructures in the fields of energy, environment, and healthcare
This book covers the proceedings of the 8th International Conference on Microelectronics, Circuits, and Systems (Micro2021) having design and developments of devices, micro- and nanotechnologies, and electronic appliances. This book includes the latest developments and emerging research topics in material sciences, devices, microelectronics, circuits, nanotechnology, system design and testing, simulation, sensors, photovoltaics, optoelectronics, and its different applications. This book is of great attraction to researchers and professionals working in electronics, microelectronics, electrical, and computer engineering.
Emerging Nanomedicines for Diabetes Mellitus Theranostics provides readers with information on the development of efficacious nanomedicines as potential theranostic agents for diabetes. The book discusses the application of various novel nanomaterials and nanocomposites for targeted delivery of insulin, glucose sensing, including nano-tattoos as glucose monitors, biosynthesized nanoparticles for diabetes treatment, and pre-clinical and clinical assays to evaluate the efficacy of nanomedicines for diabetes treatment. This is an important references source for materials scientists, pharmaceutical scientists and biomedical engineers who want to increase their understanding of how nanotechnology is being used to improve diabetes treatment. Diabetes has emerged as one of the most common diseases associated with lifestyle choices in the modern world, with significant mortality rates. Conventional treatment methods mainly involve insulin-based therapies. However, insulin therapy possesses several limitations such as weight gain and hypoglycemia. Thus, advanced research in nanomedicine is targeting the development of new and improved diagnostics and treatment methods for diabetes. - Explores the significance of nanomaterials and nanocomposites for the controlled delivery of insulin and effective diagnosis of diabetes - Assesses the efficacy of novel nano-tattoos as an emerging glucose monitoring system and the potential of biosynthesized nanoparticles as pharmaceutical ingredients for diabetes treatment - Describes various pre-clinical and clinical assays to evaluate the toxicity of nanomedicines, along with methods to mitigate the challenges associated with effective diabetes therapy via the use of nanorobots, nanoformulations and smartphone-based technologies
Fundamentals and Sensing Applications of 2D Materials provides a comprehensive understanding of a wide range of 2D materials. Examples of fundamental topics include: defect and vacancy engineering, doping and advantages of 2D materials for sensing, 2D materials and composites for sensing, and 2D materials in biosystems. A wide range of applications are addressed, such as gas sensors based on 2D materials, electrochemical glucose sensors, biosensors (enzymatic and non-enzymatic), and printed, stretchable, wearable and flexible biosensors. Due to their sub-nanometer thickness, 2D materials have a high packing density, thus making them suitable for the fabrication of thin film based sensor devices. Benefiting from their unique physical and chemical properties (e.g. strong mechanical strength, high surface area, unparalleled thermal conductivity, remarkable biocompatibility and ease of functionalization), 2D layered nanomaterials have shown great potential in designing high performance sensor devices. - Provides a comprehensive overview of 2D materials systems that are relevant to sensing, including transition metal dichalcogenides, metal oxides, graphene and other 2D materials system - Includes information on potential applications, such as flexible sensors, biosensors, optical sensors, electrochemical sensors, and more - Discusses graphene in terms of the lessons learned from this material for sensing applications and how these lessons can be applied to other 2D materials