Download Free Extrapolation Methods Book in PDF and EPUB Free Download. You can read online Extrapolation Methods and write the review.

This volume is a self-contained, exhaustive exposition of the extrapolation methods theory, and of the various algorithms and procedures for accelerating the convergence of scalar and vector sequences. Many subroutines (written in FORTRAN 77) with instructions for their use are provided on a floppy disk in order to demonstrate to those working with sequences the advantages of the use of extrapolation methods. Many numerical examples showing the effectiveness of the procedures and a consequent chapter on applications are also provided – including some never before published results and applications. Although intended for researchers in the field, and for those using extrapolation methods for solving particular problems, this volume also provides a valuable resource for graduate courses on the subject.
Table of contents
The splitting extrapolation method is a newly developed technique for solving multidimensional mathematical problems. It overcomes the difficulties arising from Richardson's extrapolation when applied to these problems and obtains higher accuracy solutions with lower cost and a high degree of parallelism. The method is particularly suitable for solving large scale scientific and engineering problems.This book presents applications of the method to multidimensional integration, integral equations and partial differential equations. It also gives an introduction to combination methods which are relevant to splitting extrapolation. The book is intended for those who may exploit these methods and it requires only a basic knowledge of numerical analysis.
This book paints a fresco of the field of extrapolation and rational approximation over the last several centuries to the present through the works of their primary contributors. It can serve as an introduction to the topics covered, including extrapolation methods, Padé approximation, orthogonal polynomials, continued fractions, Lanczos-type methods etc.; it also provides in depth discussion of the many links between these subjects. A highlight of this book is the presentation of the human side of the fields discussed via personal testimonies from contemporary researchers, their anecdotes, and their exclusive remembrances of some of the “actors.” This book shows how research in this domain started and evolved. Biographies of other scholars encountered have also been included. An important branch of mathematics is described in its historical context, opening the way to new developments. After a mathematical introduction, the book contains a precise description of the mathematical landscape of these fields spanning from the 19th century to the first part of the 20th. After an analysis of the works produced after that period (in particular those of Richardson, Aitken, Shanks, Wynn, and others), the most recent developments and applications are reviewed.
The stimulus for the present work is the growing need for more accurate numerical methods. The rapid advances in computer technology have not provided the resources for computations which make use of methods with low accuracy. The computational speed of computers is continually increasing, while memory still remains a problem when one handles large arrays. More accurate numerical methods allow us to reduce the overall computation time by of magnitude. several orders The problem of finding the most efficient methods for the numerical solution of equations, under the assumption of fixed array size, is therefore of paramount importance. Advances in the applied sciences, such as aerodynamics, hydrodynamics, particle transport, and scattering, have increased the demands placed on numerical mathematics. New mathematical models, describing various physical phenomena in greater detail than ever before, create new demands on applied mathematics, and have acted as a major impetus to the development of computer science. For example, when investigating the stability of a fluid flowing around an object one needs to solve the low viscosity form of certain hydrodynamic equations describing the fluid flow. The usual numerical methods for doing so require the introduction of a "computational viscosity," which usually exceeds the physical value; the results obtained thus present a distorted picture of the phenomena under study. A similar situation arises in the study of behavior of the oceans, assuming weak turbulence. Many additional examples of this type can be given.
A wide-ranging compilation of techniques, Extrapolation Practice for Ecotoxicological Effect Characterization of Chemicals describes methods of extrapolation in the framework of ecological risk assessment. The book, informally known as EXPECT, identifies data needs and situations where these extrapolations can be most usefully applied, makin
The 1947 paper by John von Neumann and Herman Goldstine, OC Numerical Inverting of Matrices of High OrderOCO ( Bulletin of the AMS, Nov. 1947), is considered as the birth certificate of numerical analysis. Since its publication, the evolution of this domain has been enormous. This book is a unique collection of contributions by researchers who have lived through this evolution, testifying about their personal experiences and sketching the evolution of their respective subdomains since the early years. Sample Chapter(s). Chapter 1: Some pioneers of extrapolation methods (323 KB). Contents: Some Pioneers of Extrapolation Methods (C Brezinski); Very Basic Multidimensional Extrapolation Quadrature (J N Lyness); Numerical Methods for Ordinary Differential Equations: Early Days (J C Butcher); Interview with Herbert Bishop Keller (H M Osinga); A Personal Perspective on the History of the Numerical Analysis of Fredholm Integral Equations of the Second Kind (K Atkinson); Memoires on Building on General Purpose Numerical Algorithms Library (B Ford); Recent Trends in High Performance Computing (J J Dongarra et al.); Nonnegativity Constraints in Numerical Analysis (D-H Chen & R J Plemmons); On Nonlinear Optimization Since 1959 (M J D Powell); The History and Development of Numerical Analysis in Scotland: A Personal Perspective (G Alistair Watson); Remembering Philip Rabinowitz (P J Davis & A S Fraenkel); My Early Experiences with Scientific Computation (P J Davis); Applications of Chebyshev Polynomials: From Theoretical Kinematics to Practical Computations (R Piessens). Readership: Mathematicians in numerical analysis and mathematicians who are interested in the history of mathematics.
This book helps advanced undergraduate, graduate and postdoctoral students in their daily work by offering them a compendium of numerical methods. The choice of methods pays significant attention to error estimates, stability and convergence issues as well as to the ways to optimize program execution speeds. Many examples are given throughout the chapters, and each chapter is followed by at least a handful of more comprehensive problems which may be dealt with, for example, on a weekly basis in a one- or two-semester course. In these end-of-chapter problems the physics background is pronounced, and the main text preceding them is intended as an introduction or as a later reference. Less stress is given to the explanation of individual algorithms. It is tried to induce in the reader an own independent thinking and a certain amount of scepticism and scrutiny instead of blindly following readily available commercial tools.
An enormous array of problems encountered by scientists and engineers are based on the design of mathematical models using many different types of ordinary differential, partial differential, integral, and integro-differential equations. Accordingly, the solutions of these equations are of great interest to practitioners and to science in general. Presenting a wealth of cutting-edge research by a diverse group of experts in the field, Integral Methods in Science and Engineering: Computational and Analytic Aspects gives a vivid picture of both the development of theoretical integral techniques and their use in specific science and engineering problems. This book will be valuable for researchers in applied mathematics, physics, and mechanical and electrical engineering. It will likewise be a useful study guide for graduate students in these disciplines, and for various other professionals who use integration as an essential technique in their work.