Download Free Exterior Ballistics Of Rockets Book in PDF and EPUB Free Download. You can read online Exterior Ballistics Of Rockets and write the review.

Modern Exterior Ballistics is a comprehensive text covering the basic free flight dynamics of symmetric projectiles. The book provides a historical perspective of early developments in the 19th century, the technology leading to World War I and that through World War II into the modern post-war era. Historical topics include the first ballistic firing tables, early wind tunnel experiments, the development of free flight spark ranges and the first supercomputer, ENIAC, which was designed to compute artillery trajectories for the U.S. Army Ballistic Research Laboratory. The level of the text requires an undergraduate education in mathematics, physics, and mechanical or aerospace engineering. The basic principles of ballistic science are developed from a comprehensive definition of the aerodynamic forces that control the flight dynamics of symmetric projectiles. The author carefully starts with the basic vacuum point mass trajectory, adds the effects of drag, discusses the action of winds, simple flat fire approximations, Coriolis effects and concludes with the classic modified point mass trajectories. Included in the discussion are analytical methods, change of variables from time to distance, numerical solutions and a chapter on the Siacci Method. The Siacci Method provides a historical perspective for computing flat fire trajectories by simple quadrature and is used in the sporting arms industy. The final six chapters of the book present an extensive physical and mathematical analysis of the motion of symmetric projectiles. The linearized equations of angular and swerving motion are derived in detail. The effects of mass asymmetry, in-bore yaw, cross wind and launch in a slipstream are discussed. Special consideration is given to the derivation and explanation of aerodynamic jump. These subjects are then expanded to include a complete chapter on nonlinear aerodynamic forces and moments. The final chapter in the book presents an overview of experimental methods for measuring the flight dynamics of projectiles. The great forte of Modern Exterior Ballistics is the author's effort to provide many fine specific examples of projectile motion illustrating key flight behaviors. The extensive collection of data on projectiles from small arms to artillery used to substantiate calculations and examples is alone a valuable reference. The ultimate joy of the book is the incomparable comprehensive set of flow field shadow graphs illustrating the entire spectrum of projectile flight from subsonic, through transonic and supersonic. The volume is a necessary addition to any undergraduate or graduate course in flight dynamics.
This work provides comprehensive, practice-oriented coverage of ballistics. It explains the principles and calculation methods for the main four areas of ballistics, regardless of calibre, drawing on numerous facts, observations and examples from the authors decades of experience. Interior ballistics: The characteristics of explosive materials (detonating agents and propellants), methods for calculating gas pressure and the velocity of projectiles and rockets during the acceleration phase, alternative systems for accelerating projectiles and the acceleration of fragments. Intermediate ballistics: The dynamics of the moment at which the projectile leaves the muzzle and propellant gas is ejected from the barrel, effects on the person or structure supporting the weapon and approaches to resolving questions regarding shots from close range in criminology and forensic medicine. Exterior ballistics: The forces acting on a projectile and methods for calculating them, models for calculating trajectories (including the ballistic coefficient), gyroscopic projectile stabilization theory and aerodynamic optimization of projectiles. Terminal ballistics: Empirically-derived facts and data. The principles of ballistic protection design, ballistic testing problems and possible solutions and a comprehensive discussion of ricochets a matter of considerable importance in forensics. The book is intended for ballisticians, military personnel, police officers, criminologists, shooting range specialists, sport shooters, hunters and anyone else with an interest in ballistics. Beat P. Kneubuehl holds a PhD in forensic science and a masters degree in mathematics. For 33 years he was head of the Ballistic Science Unit at the Ballistics, Weapons and Ammunition Test Centre of the Swiss Ministry of Defence. He developed key ballistics software and frequently played a leading role in range tests involving every calibre of munition. He devoted himself to the problems of ballistic protection and the effects of projectiles under the auspices of the European Committee for Standardization and of NATO. After completing a doctorate in forensic science, he added forensic ballistics to his field of activity. His earlier publications include the standard work Wound Ballistics: Basics and Applications (also published by Springer-Verlag).
International Series of Monographs on Aeronautics and Astronautics, Division VII, Volume 5: The Flight of Uncontrolled Rockets focuses on external ballistics of uncontrolled rockets. The book first discusses the equations of motion of rockets. The rocket as a system of changing composition; application of solidification principle to rockets; rotational motion of rockets; and equations of motion of the center of mass of rockets are described. The text looks at the calculation of trajectory of rockets and the fundamentals of rocket dispersion. The selection further focuses on the dispersion of finned rockets. Topics include the critical section of the trajectory; standard formula for calculating angular deviation; dispersion of actual rockets; and effective launcher length. The text also describes the dispersion of finned rotated rockets and of finned anti-tank rockets. The book also examines the effect of wind on the flight of rockets. Topics include correction to the coordinates of the point of impact for finned rockets; general effect of wind on dispersion; and general treatment of powered flight in the presence of wind. The text is important for readers interested in the ballistics of uncontrolled rockets.
Part of the Princeton Aeronautical Paperback series designed to bring to students and research engineers outstanding portions of the twelve-volume High Speed Aerodynamics and Jet Propulsion series. These books have been prepared by direct reproduction of the text from the original series and no attempt has been made to provide introductory material or to eliminate cross reference to other portions of the original volumes. Originally published in 1960. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
This is the official final report to the Office of Scientific Research and Development concerning the work done on the exterior ballistics of fin-stabilized rocket projectiles under the supervision of Section H of Division 3 of the National Defense Research Committee at the Allegany Ballistics Laboratory during 1944 and 1945, when the laboratory was operated by The George Washington University under contract OEMsr-273 with the Office of Scientific Research and Development. As such, its official title is “Final Report No. B2.2 of the Allegany Ballistics Laboratory, OSRD 5878.” After the removal of secrecy restrictions on this report, a considerable amount of expository material was added. It is our hope that thereby the report has been made readable for anyone interested in the flight of rockets. Two slightly different types of readers are anticipated. One is the trained scientist who has had no previous experience with rockets. The other is the person with little scientific training who is interested in what makes a rocket go. The first type of reader should be able to comprehend the report in its entirety. For the benefit of the second type of reader, who will wish to skip the more mathematical portions, we have attempted to supply simple explanations at the beginnings of most sections telling what is to be accomplished in those sections. It is our hope that a reader can, if so minded, skip most of the mathematics and still be able to form a general idea of rocket flight.