Download Free Express Cubes Improving The Performance Of K Ary N Cube Interconnection Networks Book in PDF and EPUB Free Download. You can read online Express Cubes Improving The Performance Of K Ary N Cube Interconnection Networks and write the review.

VLSI communication networks are wire limited. The cost of network is not a function of the number of switches require, but rather a function of the wiring density required to construct the network. This paper analyzes communications networks of varying dimension under the assumption of constant wire bisection. Expressions for the latency, average case throughput, and hot-spot throughput of k-ary n-cube networks with constant bisection are derived that agree closely with experimental measurements. It is shown that low-dimensional networks (e.g., tori) have lower latency and higher hot-spot throughput than high-dimensional networks (e.g., binary n-cubes) with the same bisection width. Keywords: Communication networks; Interconnection networks; Concurrent computing; Message passing multiprocessors; Parallel processing; Very large scale integration. (jhd).
The contributions of a diverse selection of international hardware and software specialists are assimilated in this book's exploration of the development of massively parallel processing (MPP). The emphasis is placed on industrial applications and collaboration with users and suppliers from within the industrial community consolidates the scope of the publication. From a practical point of view, massively parallel data processing is a vital step to further innovation in all areas where large amounts of data must be processed in parallel or in a distributed manner, e.g. fluid dynamics, meteorology, seismics, molecular engineering, image processing, parallel data base processing. MPP technology can make the speed of computation higher and substantially reduce the computational costs. However, to achieve these features, the MPP software has to be developed further to create user-friendly programming systems and to become transparent for present-day computer software. Application of novel electro-optic components and devices is continuing and will be a key for much more general and powerful architectures. Vanishing of communication hardware limitations will result in the elimination of programming bottlenecks in parallel data processing. Standardization of the functional characteristics of a programming model of massively parallel computers will become established. Then efficient programming environments can be developed. The result will be a widespread use of massively parallel processing systems in many areas of application.
Traditionally, design space exploration for Systems-on-Chip (SoCs) has focused on the computational aspects of the problem at hand. However, as the number of components on a single chip and their performance continue to increase, the communication architecture plays a major role in the area, performance and energy consumption of the overall system. As a result, a shift from computation-based to communication-based design becomes mandatory. Towards this end, network-on-chip (NoC) communication architectures have emerged recently as a promising alternative to classical bus and point-to-point communication architectures. In this dissertation, we study outstanding research problems related to modeling, analysis and optimization of NoC communication architectures. More precisely, we present novel design methodologies, software tools and FPGA prototypes to aid the design of application-specific NoCs.
Abstract: "The difference among different topologies in interconnection networks is a debated issue among highly parallel machine designers, since opposing parameters influence the network performance. This paper presents a new model, k-ary n-cube m-diags, which generalizes existing k-ary n-cube topologies to include hexagonal networks and their n- dimensional extensions. A performance analysis based on this model is conducted, showing that the increase of connectivity in low-dimensional networks by means of diagonal links results in better latency and throughput in the network. An algorithm for routing messages in k-ary n- cube m-diags is proposed, showing the relative ease of performing this task on such topologies."
Today's electronics industry requires new design automation methodologies that allow designers to incorporate high performance integrated circuits into smaller packaging. The aim of this book is to present current and future techniques and algorithms of high performance multichip modules (MCMs) and other packaging methodologies. Innovative technical papers in this book cover design optimization and physical partitioning; global routing/multi-layer assignment; timing-driven interconnection design (timing models, clock and power design); crosstalk, reflection, and simultaneous switching noise minimization; yield optimization; defect area minimization; low-power physical layout; and design methodologies. Two tutorial reviews review some of the most significant algorithms previously developed for the placement/partitioning, and signal integrity issues, respectively. The remaining articles review the trend of prime design automation algorithms to solve the above eight problems which arise in MCMs and other packages.