Download Free Exploring The State Of The Science In The Field Of Regenerative Medicine Book in PDF and EPUB Free Download. You can read online Exploring The State Of The Science In The Field Of Regenerative Medicine and write the review.

Recent scientific breakthroughs, celebrity patient advocates, and conflicting religious beliefs have come together to bring the state of stem cell researchâ€"specifically embryonic stem cell researchâ€"into the political crosshairs. President Bush's watershed policy statement allows federal funding for embryonic stem cell research but only on a limited number of stem cell lines. Millions of Americans could be affected by the continuing political debate among policymakers and the public. Stem Cells and the Future of Regenerative Medicine provides a deeper exploration of the biological, ethical, and funding questions prompted by the therapeutic potential of undifferentiated human cells. In terms accessible to lay readers, the book summarizes what we know about adult and embryonic stem cells and discusses how to go about the transition from mouse studies to research that has therapeutic implications for people. Perhaps most important, Stem Cells and the Future of Regenerative Medicine also provides an overview of the moral and ethical problems that arise from the use of embryonic stem cells. This timely book compares the impact of public and private research funding and discusses approaches to appropriate research oversight. Based on the insights of leading scientists, ethicists, and other authorities, the book offers authoritative recommendations regarding the use of existing stem cell lines versus new lines in research, the important role of the federal government in this field of research, and other fundamental issues.
Regenerative medicine holds the potential to create living, functional cells and tissues that can be used to repair or replace those that have suffered potentially irreparable damage due to disease, age, traumatic injury, or genetic and congenital defects. The field of regenerative medicine is broad and includes research and development components of gene and cell therapies, tissue engineering, and non-biologic constructs. Although regenerative medicine has the potential to improve health and deliver economic benefits, this relatively new field faces challenges to developing policies and procedures to support the development of novel therapies are both safe and effective. In October 2016, the National Academies of Sciences, Engineering, and Medicine hosted a public workshop with the goal of developing a broad understanding of the opportunities and challenges associated with regenerative medicine cellular therapies and related technologies. Participants explored the state of the science of cell-based regenerative therapies within the larger context of patient care and policy. This publication summarizes the presentations and discussions from the workshop.
Virtually any disease that results from malfunctioning, damaged, or failing tissues may be potentially cured through regenerative medicine therapies, by either regenerating the damaged tissues in vivo, or by growing the tissues and organs in vitro and implanting them into the patient. Principles of Regenerative Medicine discusses the latest advances in technology and medicine for replacing tissues and organs damaged by disease and of developing therapies for previously untreatable conditions, such as diabetes, heart disease, liver disease, and renal failure. - Key for all researchers and instituions in Stem Cell Biology, Bioengineering, and Developmental Biology - The first of its kind to offer an advanced understanding of the latest technologies in regenerative medicine - New discoveries from leading researchers on restoration of diseased tissues and organs
Current Legal Issues, like its sister volume Current Legal Problems, is based upon an annual colloquium held at University College London. Each year, leading scholars from around the world gather to discuss the relationship between law and another discipline of thought. Each colloquium examines how the external discipline is conceived in legal thought and argument, how the law is pictured in that discipline, and analyses points of controversy in the use, and abuse, of extra-legal arguments within legal theory and practice. Law and Bioethics, the latest volume in the Current Legal Issues series, contains a broad range of essays by scholars interested in the interactions between law and bioethics. It includes studies examining the regulation of stem cell research, human rights and bioethics, the regulation of reproductive technologies, and distributive justice in healthcare and pandemic planning.
This book summarizes the NATO Advanced Research Workshop (ARW) on “Nanoengineered Systems for Regenerative Medicine” that was organized under the auspices of the NATO Security through Science Program. I would like to thank NATO for supporting this workshop via a grant to the co-directors. The objective of ARW was to explore the various facets of regenerative me- cine and to highlight role of the “the nano-length scale” and “nano-scale systems” in defining and controlling cell and tissue environments. The development of novel tissue regenerative strategies require the integration of new insights emerging from studies of cell-matrix interactions, cellular signalling processes, developmental and systems biology, into biomaterials design, via a systems approach. The chapters in the book, written by the leading experts in their respective disciplines, cover a wide spectrum of topics ranging from stem cell biology, developmental biology, ce- matrix interactions, and matrix biology to surface science, materials processing and drug delivery. We hope the contents of the book will provoke the readership into developing regenerative medicine paradigms that combine these facets into cli- cally translatable solutions. This NATO meeting would not have been successful without the timely help of Dr. Ulrike Shastri, Sanjeet Rangarajan and Ms. Sabine Benner, who assisted in the organization and implementation of various elements of this meeting. Thanks are also due Dr. Fausto Pedrazzini and Ms. Alison Trapp at NATO HQ (Brussels, Belgium). The commitment and persistence of Ms.
Translating Regenerative Medicine to the Clinic reviews the current methodological tools and experimental approaches used by leading translational researchers, discussing the uses of regenerative medicine for different disease treatment areas, including cardiovascular disease, muscle regeneration, and regeneration of the bone and skin. Pedagogically, the book concentrates on the latest knowledge, laboratory techniques, and experimental approaches used by translational research leaders in this field. It promotes cross-disciplinary communication between the sub-specialties of medicine, but remains unified in theme by emphasizing recent innovations, critical barriers to progress, the new tools that are being used to overcome them, and specific areas of research that require additional study to advance the field as a whole. Volumes in the series include Translating Gene Therapy to the Clinic, Translating Regenerative Medicine to the Clinic, Translating MicroRNAs to the Clinic, Translating Biomarkers to the Clinic, and Translating Epigenetics to the Clinic. - Encompasses the latest innovations and tools being used to develop regenerative medicine in the lab and clinic - Covers the latest knowledge, laboratory techniques, and experimental approaches used by translational research leaders in this field - Contains extensive pedagogical updates aiming to improve the education of translational researchers in this field - Provides a transdisciplinary approach that supports cross-fertilization between different sub-specialties of medicine
Stem Cells and Biomaterials for Regenerative Medicine addresses the urgent need for a compact source of information on both the cellular and biomaterial aspects of regenerative medicine. By developing a mutual understanding between three separately functioning areas of science—medicine, the latest technology, and clinical economics—the volume encourages interdisciplinary relationships that will lead to solutions for the significant challenges faced by today's regenerative medicine. Users will find sections on the homeostatic balance created by apoptosis and proliferating tissue stem cells, the naturally regenerative capacities of various tissue types, the potential regenerative benefits of iPS-generation, various differentiation protocols, and more. Written in easily accessbile language, this volume is appropriate for any professional or medical staff looking to expand their knowledge with regard to stem cells and regenerative medicine. - Arms readers with key information on tissue engineering, artificial organs and biomaterials, while using broadly accessible language - Provides broad introduction to, and examples of, various types of stem cells, core concepts of regenerative medicine, biomaterials, nanotechnology and nanomaterials, somatic cell transdyferentiation, and more - Edited and authored by researchers with expertise in regenerative medicine, (cancer) stem cells, biomaterials, genetics and nanomaterials
This contributed volume presents the current state of research on regenerative rehabilitation across a broad range of neuro- and musculoskeletal tissues. At its core, the primary goal of regenerative rehabilitation is to restore function after damage to bones, skeletal muscles, cartilage, ligaments/tendons, or tissues of the central and peripheral nervous systems. The authors describe the physiology of these neuro- and musculoskeletal tissue types and their inherent plasticity. The latter quality is what enables these tissues to adapt to mechanical and/or chemical cues to improve functional capacity. As a result, readers will learn how regenerative rehabilitation exploits that quality, to trigger positive changes in tissue function. Combining basic, translational, and clinical aspects of the topic, the book offers a valuable resource for both scientists and clinicians in the regenerative rehabilitation field.
“An engaging, insightful, and challenging call to examine both the rhetoric and reality of innovation and inclusion in science and science policy.” —Daniel R. Morrison, American Journal of Sociology Stem cell research has sparked controversy and heated debate since the first human stem cell line was derived in 1998. Too frequently these debates devolve to simple judgments—good or bad, life-saving medicine or bioethical nightmare, symbol of human ingenuity or our fall from grace—ignoring the people affected. With this book, Ruha Benjamin moves the terms of debate to focus on the shifting relationship between science and society, on the people who benefit—or don’t—from regenerative medicine and what this says about our democratic commitments to an equitable society. People’s Science uncovers the tension between scientific innovation and social equality, taking the reader inside California’s 2004 stem cell initiative, the first of many state referenda on scientific research, to consider the lives it has affected. Benjamin reveals the promise and peril of public participation in science, illuminating issues of race, disability, gender, and socio-economic class that serve to define certain groups as more or less deserving in their political aims and biomedical hopes. Ultimately, Ruha Benjamin argues that without more deliberate consideration about how scientific initiatives can and should reflect a wider array of social concerns, stem cell research—from African Americans’ struggle with sickle cell treatment to the recruitment of women as tissue donors—still risks excluding many. Even as regenerative medicine is described as a participatory science for the people, Benjamin asks us to consider if “the people” ultimately reflects our democratic ideals.
Engineering Strategies for Regenerative Medicine considers how engineering strategies can be applied to accelerate advances in regenerative medicine. The book provides relevant and up-to-date content on key topics, including the interdisciplinary integration of different aspects of stem cell biology and technology, diverse technologies, and their applications. By providing massive amounts of data on each individual, recent scientific advances are rapidly accelerating medicine. Cellular, molecular and genetic parameters from biological samples combined with clinical information can now provide valuable data to scientists, clinicians and ultimately patients, leading to the development of precision medicine. Equally noteworthy are the contributions of stem cell biology, bioengineering and tissue engineering that unravel the mechanisms of disease, regeneration and development. - Considers how engineering strategies can accelerate novel advances in regenerative medicine - Takes an interdisciplinary approach, integrating different aspects of research, technology and application - Provides up-to-date coverage on this rapidly developing area of medicine - Presents insights from an experienced and cross-disciplinary group of researchers and practitioners with close links to industry