Download Free Exploring The Invisible Universe From Black Holes To Superstrings Book in PDF and EPUB Free Download. You can read online Exploring The Invisible Universe From Black Holes To Superstrings and write the review.

'Why'? Why is the world, the Universe the way it is? Is space infinitely large? How small is small? What happens when one continues to divide matter into ever smaller pieces? Indeed, what is matter? Is there anything else besides what can be seen? Pursuing the questions employing the leading notions of physics, one soon finds that the tangible and visible world dissolves — rather unexpectedly — into invisible things and domains that are beyond direct perception. A remarkable feature of our Universe is that most of its constituents turn out to be invisible, and this fact is brought out with great force by this book.Exploring the Invisible Universe covers the gamut of topics in advanced modern physics and provides extensive and well substantiated answers to these questions and many more. Discussed in a non-technical, yet also non-trivial manner, are topics dominated by invisible things — such as Black Holes and Superstrings as well as Fields, Gravitation, the Standard Model, Cosmology, Relativity, the Origin of Elements, Stars and Planetary Evolution, and more. Just giving the answer, as so many books do, is really not telling anything at all. To truly answer the 'why' questions of nature, one needs to follow the chain of reasoning that scientists have used to come to the conclusions they have. This book does not shy away from difficult-to-explain topics by reducing them to one-line answers and power phrases suitable for a popular talk show. The explanations are rigorous and straight to the point. This book is rarely mathematical without being afraid, however, to use elementary mathematics when called for. In order to achieve this, a large number of detailed figures, specially developed for this book and found nowhere else, convey insights that otherwise might either be inaccessible or need lengthy and difficult-to-follow explanations.After Exploring the Invisible Universe, a reader will have a deeper insight into our current understanding of the foundations of Nature and be able to answer all the questions above and then some. To understand Nature and the cutting edge ideas of contemporary physics, this is the book to have.
"The new book is a tour de force: the authors have assembled a challenging, comprehensive review of modern physics topics ranging from general relatively to superstring theory and most of the things in between. It could very well be used in an advanced undergraduate physics course intended to cover those topics that many smaller physics departments do not have the time or resources to cover in depth." CHOICE Connect "If you wish to understand the large scale structure of our solar system, the life of stars, the characteristics of the black hole which sits at the center of our galaxy or the standard model of particle physics, you must read this book. I think this book can really change the way present-day graduate students look at physics." Bertrand M Roehner Pierre and Marie Curie University, Paris "Why"? Why is the world, the Universe the way it is? Is space infinitely large? How small is small? What happens when one continues to divide matter into ever smaller pieces? Indeed, what is matter? Is there anything else besides what can be seen? Pursuing the questions employing the leading notions of physics, one soon finds that the tangible and visible world dissolves -- rather unexpectedly -- into invisible things and domains that are beyond direct perception. A remarkable feature of our Universe is that most of its constituents turn out to be invisible, and this fact is brought out with great force by this book. Exploring the Invisible Universe covers the gamut of topics in advanced modern physics and provides extensive and well substantiated answers to these questions and many more. Discussed in a non-technical, yet also non-trivial manner, are topics dominated by invisible things -- such as Black Holes and Superstrings as well as Fields, Gravitation, the Standard Model, Cosmology, Relativity, the Origin of Elements, Stars and Planetary Evolution, and more. Just giving the answer, as so many books do, is really not telling anything at all. To truly answer the "why" questions of nature, one needs to follow the chain of reasoning that scientists have used to come to the conclusions they have. This book does not shy away from difficult-to-explain topics by reducing them to one-line answers and power phrases suitable for a popular talk show. The explanations are rigorous and straight to the point. This book is rarely mathematical without being afraid, however, to use elementary mathematics when called for. In order to achieve this, a large number of detailed figures, specially developed for this book and found nowhere else, convey insights that otherwise might either be inaccessible or need lengthy and difficult-to-follow explanations. After Exploring the Invisible Universe, a reader will have a deeper insight into our current understanding of the foundations of Nature and be able to answer all the questions above and then some. To understand Nature and the cutting edge ideas of contemporary physics, this is the book to have.
Quantum Chromodynamics is the theory of strong interactions: a quantum field theory of colored gluons (Yang-Mills gauge fields) coupled to quarks (Dirac fermion fields). Lattice gauge theory is defined by discretizing spacetime into a four-dimensional lattice — and entails defining gauge fields and Dirac fermions on a lattice. The applications of lattice gauge theory are vast, from the study of high-energy theory and phenomenology to the numerical studies of quantum fields.Lattice Quantum Field Theory of the Dirac and Gauge Fields: Selected Topics examines the mathematical foundations of lattice gauge theory from first principles. It is indispensable for the study of Dirac and lattice gauge fields and lays the foundation for more advanced and specialized studies.
This book provides an introduction to how the mathematical tools from quantum field theory can be applied to economics and finance. Providing a range of quantum mathematical techniques for designing financial instruments, it demonstrates how a range of topics have quantum mechanical formulations, from asset pricing to interest rates.
Delve into the fascinating world of String Theory with this comprehensive guide that covers everything from the basics of Quantum Mechanics to the challenges and future directions in the field. Explore the connections between String Theory and Quantum Gravity, delve into the mysteries of the Multiverse, and uncover the intricate relationships between String Theory and Mathematics. Packed with insights and explanations, this book is a must-have for anyone interested in the cutting-edge theories that are shaping our understanding of the universe.
The essential beginner's guide to string theory The Little Book of String Theory offers a short, accessible, and entertaining introduction to one of the most talked-about areas of physics today. String theory has been called the "theory of everything." It seeks to describe all the fundamental forces of nature. It encompasses gravity and quantum mechanics in one unifying theory. But it is unproven and fraught with controversy. After reading this book, you'll be able to draw your own conclusions about string theory. Steve Gubser begins by explaining Einstein's famous equation E = mc2, quantum mechanics, and black holes. He then gives readers a crash course in string theory and the core ideas behind it. In plain English and with a minimum of mathematics, Gubser covers strings, branes, string dualities, extra dimensions, curved spacetime, quantum fluctuations, symmetry, and supersymmetry. He describes efforts to link string theory to experimental physics and uses analogies that nonscientists can understand. How does Chopin's Fantasie-Impromptu relate to quantum mechanics? What would it be like to fall into a black hole? Why is dancing a waltz similar to contemplating a string duality? Find out in the pages of this book. The Little Book of String Theory is the essential, most up-to-date beginner's guide to this elegant, multidimensional field of physics.
Are there other dimensions beyond our own? Is time travel possible? Can we change the past? Are there gateways to parallel universes? All of us have pondered such questions, but there was a time when scientists dismissed these notions as outlandish speculations. Not any more. Today, they are the focus of the most intense scientific activity in recent memory. In Hyperspace, Michio Kaku, author of the widely acclaimed Beyond Einstein and a leading theoretical physicist, offers the first book-length tour of the most exciting (and perhaps most bizarre) work in modern physics, work which includes research on the tenth dimension, time warps, black holes, and multiple universes. The theory of hyperspace (or higher dimensional space)--and its newest wrinkle, superstring theory--stand at the center of this revolution, with adherents in every major research laboratory in the world, including several Nobel laureates. Beginning where Hawking's Brief History of Time left off, Kaku paints a vivid portrayal of the breakthroughs now rocking the physics establishment. Why all the excitement? As the author points out, for over half a century, scientists have puzzled over why the basic forces of the cosmos--gravity, electromagnetism, and the strong and weak nuclear forces--require markedly different mathematical descriptions. But if we see these forces as vibrations in a higher dimensional space, their field equations suddenly fit together like pieces in a jigsaw puzzle, perfectly snug, in an elegant, astonishingly simple form. This may thus be our leading candidate for the Theory of Everything. If so, it would be the crowning achievement of 2,000 years of scientific investigation into matter and its forces. Already, the theory has inspired several thousand research papers, and has been the focus of over 200 international conferences. Michio Kaku is one of the leading pioneers in superstring theory and has been at the forefront of this revolution in modern physics. With Hyperspace, he has produced a book for general readers which conveys the vitality of the field and the excitement as scientists grapple with the meaning of space and time. It is an exhilarating look at physics today and an eye-opening glimpse into the ultimate nature of the universe.
- A unique exposition of the foundations of the quantum theory of black holes including the impact of string theory, the idea of black hole complementarily and the holographic principle bull; Aims to educate the physicist or student of physics who is not an expert on string theory, on the revolution that has grown out of black hole physics and string theory
The leading mind behind the mathematics of string theory discusses how geometry explains the universe we see. Illustrations.
String theory is one of the most exciting and challenging areas of modern theoretical physics. This book guides the reader from the basics of string theory to recent developments. It introduces the basics of perturbative string theory, world-sheet supersymmetry, space-time supersymmetry, conformal field theory and the heterotic string, before describing modern developments, including D-branes, string dualities and M-theory. It then covers string geometry and flux compactifications, applications to cosmology and particle physics, black holes in string theory and M-theory, and the microscopic origin of black-hole entropy. It concludes with Matrix theory, the AdS/CFT duality and its generalizations. This book is ideal for graduate students and researchers in modern string theory, and will make an excellent textbook for a one-year course on string theory. It contains over 120 exercises with solutions, and over 200 homework problems with solutions available on a password protected website for lecturers at www.cambridge.org/9780521860697.