Download Free Exploring Research Data Management Book in PDF and EPUB Free Download. You can read online Exploring Research Data Management and write the review.

Research Data Management (RDM) has become a professional topic of great importance internationally following changes in scholarship and government policies about the sharing of research data. Exploring Research Data Management provides an accessible introduction and guide to RDM with engaging tasks for the reader to follow and develop their knowledge. Starting by exploring the world of research and the importance and complexity of data in the research process, the book considers how a multi-professional support service can be created then examines the decisions that need to be made in designing different types of research data service from local policy creation, training, through to creating a data repository. Coverage includes: A discussion of the drivers and barriers to RDM Institutional policy and making the case for Research Data Services Practical data management Data literacy and training researchers Ethics and research data services Case studies and practical advice from working in a Research Data Service. This book will be useful reading for librarians and other support professionals who are interested in learning more about RDM and developing Research Data Services in their own institution. It will also be of value to students on librarianship, archives, and information management courses studying topics such as RDM, digital curation, data literacies and open science.
A comprehensive guide to everything scientists need to know about data management, this book is essential for researchers who need to learn how to organize, document and take care of their own data. Researchers in all disciplines are faced with the challenge of managing the growing amounts of digital data that are the foundation of their research. Kristin Briney offers practical advice and clearly explains policies and principles, in an accessible and in-depth text that will allow researchers to understand and achieve the goal of better research data management. Data Management for Researchers includes sections on: * The data problem – an introduction to the growing importance and challenges of using digital data in research. Covers both the inherent problems with managing digital information, as well as how the research landscape is changing to give more value to research datasets and code. * The data lifecycle – a framework for data’s place within the research process and how data’s role is changing. Greater emphasis on data sharing and data reuse will not only change the way we conduct research but also how we manage research data. * Planning for data management – covers the many aspects of data management and how to put them together in a data management plan. This section also includes sample data management plans. * Documenting your data – an often overlooked part of the data management process, but one that is critical to good management; data without documentation are frequently unusable. * Organizing your data – explains how to keep your data in order using organizational systems and file naming conventions. This section also covers using a database to organize and analyze content. * Improving data analysis – covers managing information through the analysis process. This section starts by comparing the management of raw and analyzed data and then describes ways to make analysis easier, such as spreadsheet best practices. It also examines practices for research code, including version control systems. * Managing secure and private data – many researchers are dealing with data that require extra security. This section outlines what data falls into this category and some of the policies that apply, before addressing the best practices for keeping data secure. * Short-term storage – deals with the practical matters of storage and backup and covers the many options available. This section also goes through the best practices to insure that data are not lost. * Preserving and archiving your data – digital data can have a long life if properly cared for. This section covers managing data in the long term including choosing good file formats and media, as well as determining who will manage the data after the end of the project. * Sharing/publishing your data – addresses how to make data sharing across research groups easier, as well as how and why to publicly share data. This section covers intellectual property and licenses for datasets, before ending with the altmetrics that measure the impact of publicly shared data. * Reusing data – as more data are shared, it becomes possible to use outside data in your research. This chapter discusses strategies for finding datasets and lays out how to cite data once you have found it. This book is designed for active scientific researchers but it is useful for anyone who wants to get more from their data: academics, educators, professionals or anyone who teaches data management, sharing and preservation. "An excellent practical treatise on the art and practice of data management, this book is essential to any researcher, regardless of subject or discipline." —Robert Buntrock, Chemical Information Bulletin
Research funders in the UK, USA and across Europe are implementing data management and sharing policies to maximize openness of data, transparency and accountability of the research they support. Written by experts from the UK Data Archive with over 20 years experience, this book gives post-graduate students, researchers and research support staff the data management skills required in today’s changing research environment. The book features guidance on: how to plan your research using a data management checklist how to format and organize data how to store and transfer data research ethics and privacy in data sharing and intellectual property rights data strategies for collaborative research how to publish and cite data how to make use of other people’s research data, illustrated with six real-life case studies of data use.
It has become increasingly accepted that important digital data must be retained and shared in order to preserve and promote knowledge, advance research in and across all disciplines of scholarly endeavor, and maximize the return on investment of public funds. To meet this challenge, colleges and universities are adding data services to existing infrastructures by drawing on the expertise of information professionals who are already involved in the acquisition, management and preservation of data in their daily jobs. Data services include planning and implementing good data management practices, thereby increasing researchers' ability to compete for grant funding and ensuring that data collections with continuing value are preserved for reuse. This volume provides a framework to guide information professionals in academic libraries, presses, and data centers through the process of managing research data from the planning stages through the life of a grant project and beyond. It illustrates principles of good practice with use-case examples and illuminates promising data service models through case studies of innovative, successful projects and collaborations.
Research Data Management and Data Literacies help researchers familiarize themselves with RDM, and with the services increasingly offered by libraries. This new volume looks at data-intensive science, or 'Science 2.0' as it is sometimes termed in commentary, from a number of perspectives, including the tasks academic libraries need to fulfil, new services that will come online in the near future, data literacy and its relation to other literacies, research support and the need to connect researchers across the academy, and other key issues, such as 'data deluge,' the importance of citations, metadata and data repositories. This book presents a solid resource that contextualizes RDM, including good theory and practice for researchers and professionals who find themselves tasked with managing research data. - Gives guidance on organizing, storing, preserving and sharing research data using Research Data Management (RDM) - Contextualizes RDM within the global shift to data-intensive research - Helps researchers and information professionals understand and optimize data-intensive ways of working - Considers RDM in relation to varying needs of researchers across the sciences and humanities - Presents key issues surrounding RDM, including data literacy, citations, metadata and data repositories
In an era dominated by the demands of the 21st-century workforce, the imperative for distributed and asynchronous work has never been more pronounced. Global organizations grapple with the challenge of fostering connections for diverse purposes, ranging from team building to promoting inclusivity in the context of diversity, equity, and inclusion (DEI), and addressing collaborative operational needs. A deep dive into the creation and utilization of virtual communities, illuminating their effectiveness in various professional settings across industries is necessary to empower leaders to connect with their teams. From informal social learning environments to formal organizational structures, more knowledge is needed to showcase how professionals can leverage authentic connections to inform and support modern professional practice. Utilizing Virtual Communities in Professional Practice serves this purpose and stands as a comprehensive guide that seeks to support professionals in exploring the latest theoretical frameworks underpinning successful virtual communities. Each chapter of the book combines theoretical insights with practical applications, rooted in research and supported by relevant literature. By providing examples from diverse industries, the book empowers individuals to consider new virtual community approaches for their unique professional settings. The objective is to equip readers with new ideas and considerations, enabling them to customize and implement virtual communities effectively in realms such as education, business, and community engagement.
Learn how to use R to turn raw data into insight, knowledge, and understanding. This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible. Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You'll get a complete, big-picture understanding of the data science cycle, along with basic tools you need to manage the details. Each section of the book is paired with exercises to help you practice what you've learned along the way. You'll learn how to: Wrangle—transform your datasets into a form convenient for analysis Program—learn powerful R tools for solving data problems with greater clarity and ease Explore—examine your data, generate hypotheses, and quickly test them Model—provide a low-dimensional summary that captures true "signals" in your dataset Communicate—learn R Markdown for integrating prose, code, and results
Higher education institutions in the United States and across the globe, are realizing the importance of enabling internal and external collaborative work, e.g., interdisciplinary research and community partnerships. In recent years, researchers have documented the benefits of organizational collaboration for research including greater efficiency, effectiveness, and enhanced research reputation. In addition, accreditors, foundations, business, and government agencies have been espousing the value of collaboration for knowledge creation and research and improved organizational functioning. As a result of both the external pressures and the known benefits, many forms of internal and external research collaborations have begun to emerge in higher education. At the heart of this change, academic libraries, who have long been models for collaborative work, are increasingly participating in the research process by providing a widening range of research services beyond traditional reference services. Innovative library services, in areas such as bibliometric analysis, research data management, and data repositories, are evolving in response to changes in education funding and policies. These funding and policy changes have also coincided with technological developments to create opportunities for academic librarians to find new roles within their institutions and the research community. There is a growing body of literature examining these changing academic library roles, but few volumes have concentrated on how the nature of collaborative work in libraries is helping to reshape institutional research practices. Academic Libraries and Collaborative Research Services fills that void by providing academic librarians and administrators with case studies and guidance on how academic libraries are establishing their place in this new collaborative research arena in the areas of emerging liaison roles, research data services, open access and scholarly publishing, and professional development programming. The book will also be useful to higher education administrators and institutional research officers looking for information on how to partner with libraries to increase the effectiveness of collaborative research.
"This book is an updated look at the state of technology in the field of data mining and analytics offering the latest technological, analytical, ethical, and commercial perspectives on topics in data mining"--Provided by publisher.
Researchers in a number of disciplines deal with large text sets requiring both text management and text analysis. Faced with a large amount of textual data collected in marketing surveys, literary investigations, historical archives and documentary data bases, these researchers require assistance with organizing, describing and comparing texts. Exploring Textual Data demonstrates how exploratory multivariate statistical methods such as correspondence analysis and cluster analysis can be used to help investigate, assimilate and evaluate textual data. The main text does not contain any strictly mathematical demonstrations, making it accessible to a large audience. This book is very user-friendly with proofs abstracted in the appendices. Full definitions of concepts, implementations of procedures and rules for reading and interpreting results are fully explored. A succession of examples is intended to allow the reader to appreciate the variety of actual and potential applications and the complementary processing methods. A glossary of terms is provided.