Download Free Exploring Computer Science With Scheme Book in PDF and EPUB Free Download. You can read online Exploring Computer Science With Scheme and write the review.

A presentation of the central and basic concepts, techniques, and tools of computer science, with the emphasis on presenting a problem-solving approach and on providing a survey of all of the most important topics covered in degree programmes. Scheme is used throughout as the programming language and the author stresses a functional programming approach to create simple functions so as to obtain the desired programming goal. Such simple functions are easily tested individually, which greatly helps in producing programs that work correctly first time. Throughout, the author aids to writing programs, and makes liberal use of boxes with "Mistakes to Avoid." Programming examples include: * abstracting a problem; * creating pseudo code as an intermediate solution; * top-down and bottom-up design; * building procedural and data abstractions; * writing progams in modules which are easily testable. Numerous exercises help readers test their understanding of the material and develop ideas in greater depth, making this an ideal first course for all students coming to computer science for the first time.
CONCRETE ABSTRACTIONS offers students a hands-on, abstraction-based experience of thinking like a computer scientist. This text covers the basics of programming and data structures, and gives first-time computer science students the opportunity to not only write programs, but to prove theorems and analyze algorithms as well. Students learn a variety of programming styles, including functional programming, assembly-language programming, and object-oriented programming (OOP). While most of the book uses the Scheme programming language, Java is introduced at the end as a second example of an OOP system and to demonstrate concepts of concurrent programming.
Showing off scheme - Functions - Expressions - Defining your own procedures - Words and sentences - True and false - Variables - Higher-order functions - Lambda - Introduction to recursion - The leap of faith - How recursion works - Common patterns in recursive procedures - Advanced recursion - Example : the functions program - Files - Vectors - Example : a spreadsheet program - Implementing the spreadsheet program - What's next?
A comprehensive first course in Scheme, covering all of its major features: abstraction, functional programming, data types, recursion, and semantic programming. Although the primary goal is to teach students to program in Scheme, this will be suitable for anyone taking a general programming principles course. Each chapter is divided into three sections: core, appendix , and problems. Most essential topics are covered in the core section, but it is assumed that most students will read the appendices and solve most of the problems - all of which require short Scheme procedures. As well as providing a thorough grounding in Scheme, the author discusses different programming paradigms in depth. An important theme throughout is that of "meta-programming", thus providing an insight into topics such as type-checking and overloading which might otherwise be missed.
In 1996 the International Federation for Information Processing (IFIP) establ- hed its rst Technical Committee on foundations of computer science, TC1. The aim of IFIP TC1 is to support the development of theoretical computer science as a fundamental science and to promote the exploration of fundamental c- cepts, models, theories, and formal systems in order to understand laws, limits, and possibilities of information processing. This volume constitutes the proceedings of the rst IFIP International C- ference on Theoretical Computer Science (IFIP TCS 2000) { Exploring New Frontiers of Theoretical Informatics { organized by IFIP TC1, held at Tohoku University, Sendai, Japan in August 2000. The IFIP TCS 2000 technical program consists of invited talks, contributed talks, and a panel discussion. In conjunction with this program there are two special open lectures by Professors Jan van Leeuwen and Peter D. Mosses. The decision to hold this conference was made by IFIP TC1 in August 1998, and since then IFIP TCS 2000 has bene ted from the e orts of many people; in particular, the TC1 members and the members of the Steering Committee, the Program Committee, and the Organizing Committee of the conference. Our special thanks go to the Program Committee Co-chairs: Track (1): Jan van Leeuwen (U. Utrecht), Osamu Watanabe (Tokyo Inst. Tech.) Track (2): Masami Hagiya (U. Tokyo), Peter D. Mosses (U. Aarhus).
A completely revised edition, offering new design recipes for interactive programs and support for images as plain values, testing, event-driven programming, and even distributed programming. This introduction to programming places computer science at the core of a liberal arts education. Unlike other introductory books, it focuses on the program design process, presenting program design guidelines that show the reader how to analyze a problem statement, how to formulate concise goals, how to make up examples, how to develop an outline of the solution, how to finish the program, and how to test it. Because learning to design programs is about the study of principles and the acquisition of transferable skills, the text does not use an off-the-shelf industrial language but presents a tailor-made teaching language. For the same reason, it offers DrRacket, a programming environment for novices that supports playful, feedback-oriented learning. The environment grows with readers as they master the material in the book until it supports a full-fledged language for the whole spectrum of programming tasks. This second edition has been completely revised. While the book continues to teach a systematic approach to program design, the second edition introduces different design recipes for interactive programs with graphical interfaces and batch programs. It also enriches its design recipes for functions with numerous new hints. Finally, the teaching languages and their IDE now come with support for images as plain values, testing, event-driven programming, and even distributed programming.
A new advanced textbook/reference providing a comprehensive survey of hardware and software architectural principles and methods of computer systems organization and design. The book is suitable for a first course in computer organization. The style is similar to that of the author's book on assembly language in that it strongly supports self-study by students. This organization facilitates compressed presentation of material. Emphasis is also placed on related concepts to practical designs/chips. Topics: material presentation suitable for self- study; concepts related to practical designs and implementations; extensive examples and figures; details provided on several digital logic simulation packages; free MASM download instructions provided; and end-of-chapter exercises.
These are my lecture notes from CS381/481: Automata and Computability Theory, a one-semester senior-level course I have taught at Cornell Uni versity for many years. I took this course myself in thc fall of 1974 as a first-year Ph.D. student at Cornell from Juris Hartmanis and have been in love with the subject ever sin,:e. The course is required for computer science majors at Cornell. It exists in two forms: CS481, an honors version; and CS381, a somewhat gentler paced version. The syllabus is roughly the same, but CS481 go es deeper into thc subject, covers more material, and is taught at a more abstract level. Students are encouraged to start off in one or the other, then switch within the first few weeks if they find the other version more suitaLle to their level of mathematical skill. The purpose of t.hc course is twofold: to introduce computer science students to the rieh heritage of models and abstractions that have arisen over the years; and to dew!c'p the capacity to form abstractions of their own and reason in terms of them.
A comprehensive course in Scheme, covering all of its major features: abstraction; functional programming; data types; recursion; and semantic programming. This volume aims to teach students to program in Scheme and discusses different programming paradigms in depth. An important theme throughout is that of meta-programming, thus providing an insight into topics such as type-checking and overloading.
The art, craft, discipline, logic, practice, and science of developing large-scale software products needs a believable, professional base. The textbooks in this three-volume set combine informal, engineeringly sound practice with the rigour of formal, mathematics-based approaches. Volume 1 covers the basic principles and techniques of formal methods abstraction and modelling. First this book provides a sound, but simple basis of insight into discrete mathematics: numbers, sets, Cartesians, types, functions, the Lambda Calculus, algebras, and mathematical logic. Then it trains its readers in basic property- and model-oriented specification principles and techniques. The model-oriented concepts that are common to such specification languages as B, VDM-SL, and Z are explained here using the RAISE specification language (RSL). This book then covers the basic principles of applicative (functional), imperative, and concurrent (parallel) specification programming. Finally, the volume contains a comprehensive glossary of software engineering, and extensive indexes and references. These volumes are suitable for self-study by practicing software engineers and for use in university undergraduate and graduate courses on software engineering. Lecturers will be supported with a comprehensive guide to designing modules based on the textbooks, with solutions to many of the exercises presented, and with a complete set of lecture slides.