Download Free Explorations In Monte Carlo Methods Book in PDF and EPUB Free Download. You can read online Explorations In Monte Carlo Methods and write the review.

Monte Carlo methods are among the most used and useful computational tools available today, providing efficient and practical algorithims to solve a wide range of scientific and engineering problems. Applications covered in this book include optimization, finance, statistical mechanics, birth and death processes, and gambling systems. Explorations in Monte Carlo Methods provides a hands-on approach to learning this subject. Each new idea is carefully motivated by a realistic problem, thus leading from questions to theory via examples and numerical simulations. Programming exercises are integrated throughout the text as the primary vehicle for learning the material. Each chapter ends with a large collection of problems illustrating and directing the material. This book is suitable as a textbook for students of engineering and the sciences, as well as mathematics.
This book covers the main tools used in statistical simulation from a programmer’s point of view, explaining the R implementation of each simulation technique and providing the output for better understanding and comparison.
We have sold 4300 copies worldwide of the first edition (1999). This new edition contains five completely new chapters covering new developments.
This monograph surveys the present state of Monte Carlo methods. we have dallied with certain topics that have interested us Although personally, we hope that our coverage of the subject is reasonably complete; at least we believe that this book and the references in it come near to exhausting the present range of the subject. On the other hand, there are many loose ends; for example we mention various ideas for variance reduction that have never been seriously appli(:d in practice. This is inevitable, and typical of a subject that has remained in its infancy for twenty years or more. We are convinced Qf:ver theless that Monte Carlo methods will one day reach an impressive maturity. The main theoretical content of this book is in Chapter 5; some readers may like to begin with this chapter, referring back to Chapters 2 and 3 when necessary. Chapters 7 to 12 deal with applications of the Monte Carlo method in various fields, and can be read in any order. For the sake of completeness, we cast a very brief glance in Chapter 4 at the direct simulation used in industrial and operational research, where the very simplest Monte Carlo techniques are usually sufficient. We assume that the reader has what might roughly be described as a 'graduate' knowledge of mathematics. The actual mathematical techniques are, with few exceptions, quite elementary, but we have freely used vectors, matrices, and similar mathematical language for the sake of conciseness.
Apart from a thorough exploration of all the important concepts, this volume includes over 75 algorithms, ready for putting into practice. The book also contains numerous hands-on implementations of selected algorithms to demonstrate applications in realistic settings. Readers are assumed to have a sound understanding of calculus, introductory matrix analysis, and intermediate statistics, but otherwise the book is self-contained. Suitable for graduates and undergraduates in mathematics and engineering, in particular operations research, statistics, and computer science.
This book provides an introduction to Monte Carlo simulations in classical statistical physics and is aimed both at students beginning work in the field and at more experienced researchers who wish to learn more about Monte Carlo methods. The material covered includes methods for both equilibrium and out of equilibrium systems, and common algorithms like the Metropolis and heat-bath algorithms are discussed in detail, as well as more sophisticated ones such as continuous time Monte Carlo, cluster algorithms, multigrid methods, entropic sampling and simulated tempering. Data analysis techniques are also explained starting with straightforward measurement and error-estimation techniques and progressing to topics such as the single and multiple histogram methods and finite size scaling. The last few chapters of the book are devoted to implementation issues, including discussions of such topics as lattice representations, efficient implementation of data structures, multispin coding, parallelization of Monte Carlo algorithms, and random number generation. At the end of the book the authors give a number of example programmes demonstrating the applications of these techniques to a variety of well-known models.
In the seven years since this volume first appeared. there has been an enormous expansion of the range of problems to which Monte Carlo computer simulation methods have been applied. This fact has already led to the addition of a companion volume ("Applications of the Monte Carlo Method in Statistical Physics", Topics in Current Physics. Vol . 36), edited in 1984, to this book. But the field continues to develop further; rapid progress is being made with respect to the implementation of Monte Carlo algorithms, the construction of special-purpose computers dedicated to exe cute Monte Carlo programs, and new methods to analyze the "data" generated by these programs. Brief descriptions of these and other developments, together with numerous addi tional references, are included in a new chapter , "Recent Trends in Monte Carlo Simulations" , which has been written for this second edition. Typographical correc tions have been made and fuller references given where appropriate, but otherwise the layout and contents of the other chapters are left unchanged. Thus this book, together with its companion volume mentioned above, gives a fairly complete and up to-date review of the field. It is hoped that the reduced price of this paperback edition will make it accessible to a wide range of scientists and students in the fields to which it is relevant: theoretical phYSics and physical chemistry , con densed-matter physics and materials science, computational physics and applied mathematics, etc.
Focusses on the industry and use of mathematical methods, in particular the Monte Carlo method as a tool that can support and improve the engineering of systems. The application of the Monte Carlo method to system engineering is a new concept and the Monte Carlo method allows serious mathematical treatment of real-world industrial systems. This book which includes a large number of worked examples from real industrial problems, will prove a valuable reference source for students, researchers and engineers. It presents a unified approach to time-dependent system behavior in which the Monte Carlo method serves as a tool to obtain solutions to real-world challenges. The author suggest that efficiency can be increased through this integrated approach which combines previously independent considerations such as product reliability, maintenance requirements and the availability of spare parts. Features include: * Comprehensive coverage of the basic theory behind systems engineering and the Monte Carlo method enabling the reader to understand the concepts involved * Description of the method from the basic estimation of simple statistical processes, through the evaluation of multidimensional integrals to the solution of complex transport equations * Extensive examples detailing practical industrial applications for each of the techniques presented * Accompanying software (available via ftp) relating to specific examples which allows the reader to use the methods described to solve practical problems * Discussion of a variety of analytical tools from classical probabilistic methods to the concepts of event distribution, aging and Markovian methods explaining how these fit into the general systems engineering framework.